December 5, 2012

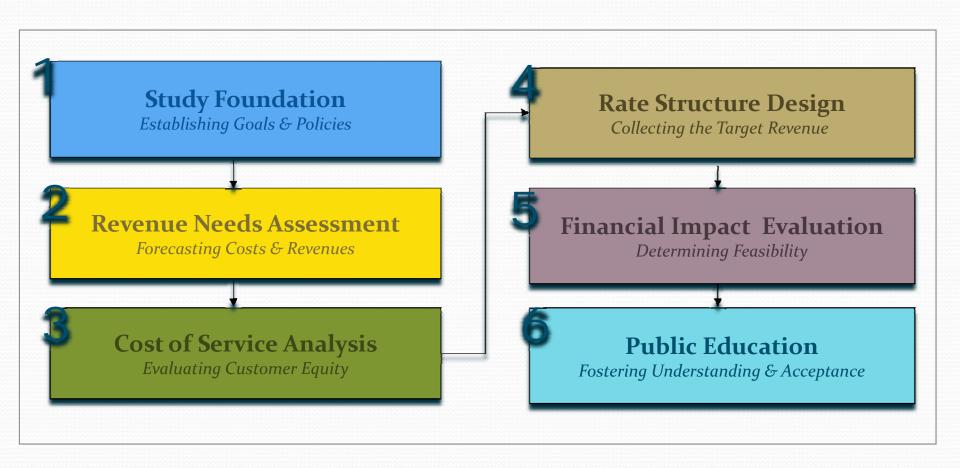
WATER CONSERVATION IN THE OKANAGAN

Water Finance & Rates

Karyn Johnson, Principal

T: (425) 867-1802 www.fcsgroup.com

Co-hosted by:



Steps to a Successful Rate Study

Page 2

Step 1: Study Foundation

Identify Rate Setting Goals

Financial Sustainability

- Sufficient & predictable revenue to recover costs
- Stable & predictable impacts to customers
- Adaptable to changing supply and demand

Fairness & Equity to Customers

- Reflect cost of providing service to customers
- Recover fair share of costs based on usage patterns & service requirements

Transparency & Simplicity

- Easy to understand and administer
- Compatible with billing system / meter reading

Resource Management

- Promote conservation and efficiency of use
- Protect natural resources
- Meet regulatory requirements

Affordability

- Support economic development / preservation
- Address low-income concerns

Step 1: Study Foundation

Establish Financial Policies

Self-Supporting Utility

- User pay philosophy
- Eliminate reliance on taxes / other subsidies

Operating Reserves (Working Capital)

 45 to 90 days of annual operating & maintenance expense; tied to timing of expenditure payments and revenue collection

Rate Stabilization Fund

• 10% to 25% of annual rate revenue; tied to revenue volatility and risk tolerance (e.g. conservation-based rate structures)

Infrastructure Reinvestment Funding

 Regular, predictable amount of annual rate funding to provide cash resources to replace aging infrastructure; avoids rate spikes

Debt Management

• Appropriate balance of cash versus debt financing; 5% to 25% of total revenues

Step 2: Revenue Needs Assessment

Forecast Total Costs for Rate Recovery

Operating & Maintenance Costs

• Salaries & benefits, services & supplies, materials & equipment, etc.

Allocated Portion of Shared Costs

• Administrative & overhead, support services, central services, etc.

Infrastructure Reinvestment Funding

 Annual funding from rates to recover amortization / depreciation of utility system infrastructure assets

Cash Funded Capital

- Rate funded non-capitalized (expensed) routine capital outlay
- Direct rate funding of major capital

Debt Service Payments

 Rate funded debt service payments for debtfinanced major capital

Step 2: Revenue Needs Assessment

Forecast Rate Revenue Needs

Forecast Revenue Under Existing Rates

• Incorporate customer growth and demand forecasts

Forecast Non-Rate Revenues

- Identify miscellaneous operating revenues
- Incorporate phase-out strategies for non-utility revenues (e.g. parcel taxes)

Evaluate Sufficiency of Current Rates

- Compare forecasted annual expenses against forecasted annual revenues at existing levels
- Determine annual shortfall / surplus

Develop Rate Revenue Adjustment Strategy

- Consider use of available cash reserves
- Implement "smoothed" utility-wide rate adjustment strategies to the extent practical

Determine Annual Revenue From Rates

• Identify annual rate revenue requirement for use in the Cost of Service Analysis

Define Water System Functions

Customer

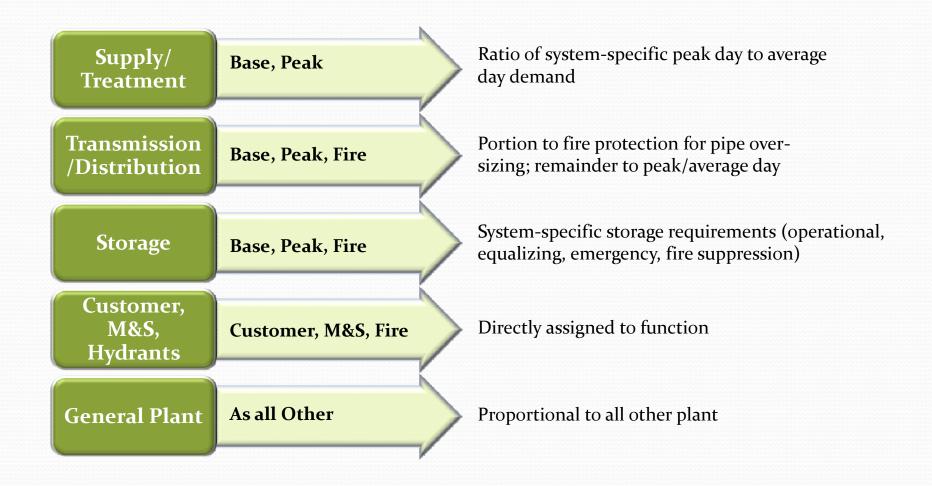
 Costs associated with providing services to customers regardless of use (account setup, metering reading, billing, office support)

Meters & Services

• Costs associated with installation, maintenance and repairs of meters and service connections

Base Demand

• Costs associated with meeting a constant, or average, annual rate of use


Peak Demand

Costs associated with meeting peak period demand

Fire Protection

Costs associated with providing fire suppression services

Allocate Costs to Functions

Define Customer Classes

- Land use
- Usage levels
- Usage patterns
- Seasonality of use
- Individual versus master metered
- Distinct service requirements
- Social policies (e.g. low-income)

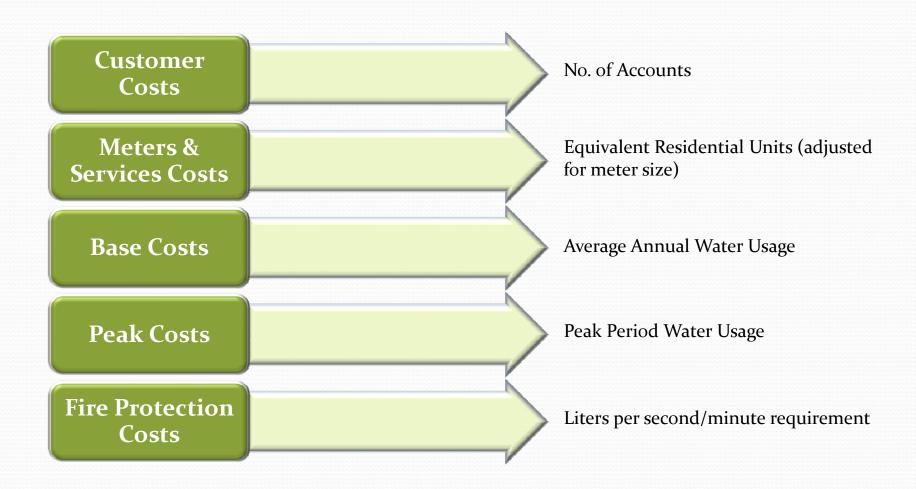
Sample Customer Classes

Single Family Residential (SFR) Typically largest customer group; relatively low usage per unit; high peak demand; lowest fire flow requirement

Multi-family Residential (MFR) • Lower usage per dwelling unit; usually master metered; relatively constant use; fire flow requirement between SFR & commercial

Commercial/ Industrial

• Diversity in use per account; relatively constant use; highest fire flow requirement


Parks, Irrigation, & Agriculture

 Often smallest customer classes in terms of accounts; majority of use in peak season; no fire flow requirement

Other

• Low-income; governmental; institutional; contract / wholesale service; interruptible service; outside city retail; bulk water

Allocate Costs to Customer Classes

Step 4: Rate Structure Design

Considerations

Community Demographics

- Size of customer base
- Diversity of customer base
- Economics of customer base

Unique Consumption Patterns

- Average annual use
- Winter period use
- Summer period use

Specific Conservation Goals

- Reduce total usage
- Reduce peak demand
- Reduce targeted customer class usage
- Get conservation rate concept in place

Step 4: Rate Structure Design

Alternative Structures

Flat Rates

- Flat charge per customer or equivalent customer
- Water usage data is not available
- Sustainability vs. equity / conservation

Uniform Volume Rates

- Volume charge per unit of water for all customers
- Consistent usage patterns of customer base
- Sustainability / simplicity vs. equity / conservation

Class Specific Volume Rates

- Volume charge varies by customer class
- Diverse usage, demand patterns
- Equity amongst customer classes

Increasing Block Rates (SFR)

- Volume charge increases at water use thresholds
- Conservation highly valued
- Equity / conservation vs. stability / simplicity

Seasonal Rates

- Volume charge varies by season; may combine with increasing block rate forms
- Equity / conservation vs. stability / simplicity

Step 5: Financial Impact Evaluation

Determine Feasibility

- Evaluate customer class bills at various usage levels
- Perform sensitivity analyses
- Select rate structure that best achieves balance of sometimes competing goals
- Develop phase-in strategies if needed

Step 6: Public Education

Fostering Understanding & Buy-In

Tie to Important Public Policy Issues

- Environment & habitat preservation
- Resource conservation
- Responsible management
- Equitable treatment of citizens
- Safe and reliable drinking water
- Economic development opportunities
- Stewardship and legacy

Link Rates to Key Outcomes

- Improved service
- Reliable, secure systems
- More stable rates
- Fairer rates
- Responsible stewardship