

Water Management of the Okanagan Lake Regulation System

November 16, 2016

Presented to the Drought Trigger Guidelines for Okanagan Mainstem Lakes Workshop

Shaun Reimer, P.Eng. Public Safety & Protection Ministry of Forest, Lands and Natural Resource Operations Penticton

Watershed Description

- Tributary to Columbia River
- Okanagan Basin Drainage area = 8,200 km² (in Canada)
- Main stem lakes:
 - Kalamalka/Wood (3520 ha; 8700 acre)
 - Okanagan (34075 ha; 84200 acre)
 - Skaha (2023 ha; 5000 acre)
 - Vaseux
 - Osoyoos

- (2023 ha; 5000 acre) (243 ha; 600 acre) (2218 ha; 5728 acre)
- (2318 ha; 5728 acre)

Okanagan Lake Regulation System

- System extends from Kalamalka Lake to north end of Osoyoos Lake
- 4 dams (Kalamalka, Okanagan, Skaha & Vaseux Lakes)
- 17 vertical drop structures
- 38 km of engineered channel, including 68 km of dikes
- 4 sediment basins

Construction of the Okanagan Flood Control System

- A Joint Board of Engineers:
 - Appointed in 1943 to report out after a major 1942 flood;
 - Recommended the construction of dams, vertical drop structures, and river channelization, as well as the establishment of operating ranges;
- Recommendations were implemented after a "Memorandum of Agreement" was signed in 1950 between the Federal and Provincial governments;
- Project was completed between 1950 &1958;
- Costs of the construction and maintenance were shared equally.

Okanagan Basin Implementation Agreement

In 1976, the Okanagan Basin Implementation Agreement was signed by the Federal and Provincial Governments;

- It set out seasonal targets for main stem lake elevations and river flows. These targets take into account:
 - Anticipated flood and prolonged drought conditions;
 - Water requirements for Sockeye and Kokanee
 - Some infrastructure was upgrades and repaired (1976-1981);
 - Under this agreement, the Province became the operators of the Okanagan Flood Control System.

Range of Flows and Lake Levels

Okanagan Lake operational range: 1.15 m

- 341.34 m to 342.48 m geodetic;
- Under prolonged drought conditions (successive years <247 Million m³), lake may be drawn down to 340.4 m;

Average inflow into Okanagan Lake: 530 Million m³ (1.5 m on lake);

How are decisions made??

Okanagan Lal	e Regulation System-	Lake Level Targets	
Month	Volume	Okanagan Lake	Flow at
	Forecast	Elevation	Oliver
	M cu. m.	(metres)	(cu. m/s)
Jan.		341.74 by month end	5 to 28.3
Feb.	< 430	As High as Possible	5 to 28.3
	> 430	341.54 by month end	5 to 28.3
Mar.	< 620	As High as Possible	5 to 28.3
Apr.	> 620	341.49 by month end	5 to 28.3
	<250	As High as Possible	5 to 28.3
	370 to 500	341.44 by month end	5 to 28.3
	> 620	341.34 by month end	> 45
		(major flooding expected)	
Мау	Lake	342.48 by month end	> 6.5
	Filling		
Jun.		342.44 by month end	> 6.5
Jul.		342.24	> 8.2
Aug.		342.04	10.6 to 28.3
Sep.		342.04 on Sept 1	9.2 to 28.3
		341.95 on Sept 15	9.9 to 15.6
		341.89 on Sept 30	
Oct.		341.84 by Oct 15	9.9 to 15.6
Nov,		341.84 by month end	5 to 28.3
Dec.		341.84 by month end	5 to 28.3

Fish Water Management Tool

- Computer Model used for decision making support;
- Forecasts Okanagan Lake and River levels
 based on inflow forecasts from River Forecast
 Centre (Victoria) and a Release Schedule from
 Okanagan Lake.
- Uses peak spawning dates and temperature data to inform the water manager of fish hatching and emergence;
- Seasonal or monthly target levels conform to those developed under the Okanagan Basin
 Implementation Agreement.
- Partners include Douglas County PUD (US), DFO, ONA, FLNRO.

Fish Water Management Tool Output

Fish Water Management Tool Output

2013

Management Constraints

Okanagan River Design Flows range from 60 m³/s in Penticton to 96 m³/s south of Oliver;

Net difference of 40 m³/s (inflow - outflow) on Okanagan Lake = 1 cm/day.

Seasonal constraints include maximum flow of 28.3 m³/s (1000 cfs) in Okanagan River at Oliver until Sockeye eggs hatch and emerge from gravel;

This constraint overridden for large snowpacks;

Tributary flow downstream of Penticton means that this flow may be much less out of Okanagan Lake Dam.

Guideline 1: Do not fill Okanagan Lake above 342.69 metres. Guideline 2: Avoid drawing down Okanagan Lake below 341.44 metres. Guideline 3: Minimise the drawdown of Okanagan Lake between the time of peak kokanee shore spawning and the date of 100% fry emergence (~March/April). i.e., minimise de-watering of kokanee eggs and fry subject to guidelines 1 (above), and 8 and 9 (described below). Guideline 4: Do not exceed 65 m³.sec⁻¹ releases at Okanagan River, Penticton, to minimise the number of buildings flooded at and downstream of Penticton. (Note: Okanagan Lake dam at Penticton is capable of water releases upwards of 78 m³, sec⁻¹ under flood elevations. The 60 m³, sec⁻¹ design level has been exceeded several times in the past). Guideline 5: Provide summer flows for river recreation if possible (i.e., maintain flows of 20-30 m³.sec⁻¹ in July through August), subject to satisfying ALL other guidelines. Guideline 6: Adult sockeye migration-maintain flows at Oliver between 8.5-12.7 m³.sec⁻¹ during Aug 1-Sept 15 to allow "easy" passage, subject to guidelines 1 and 2. Guideline 7: Adult sockeye spawning—maintain flows between 9.9-15.6 m³.sec⁻¹ during September 16-October 31 to maximise "good" spawning habitat, subject to guidelines 1 and 2. Guideline 8: Sockeye egg and alevin incubation—keep flows between 5.0-28.3 m³.sec⁻¹ between November 1 and the anticipated date of 100% emergence (~ April/May). i.e., incubation flows must be greater than or equal to 50 % of spawning flows & must not exceed 28 m³.sec⁻¹ to avoid redd desiccation & scouring (respectively), subject to guidelines 1 and 2. Guideline 9: Sockeye fry emergence and migration-maintain flows between 5.0-28.3 m³.sec⁻¹ during February 16-April 30, subject to guidelines 1 and 2.

Guideline 10:Maintain adequate sockeye rearing habitat in Osoyoos Lake—under drought and early onset of temperature/oxygen "squeeze", provide average August or September inflows above 10 m³.sec⁻¹ to avoid high mortality of rearing fry, <u>subject</u> to <u>quideline 2</u>.

CHEAT SHEET

River Constraints

Okanagan River summer flows generally kept above 8 m3/s for irrigation.

- Volume flow more important in providing depth of water over intakes rather than volume for withdrawals;
- Difference between 6 m3/s and 8 m3/s would be 4 cm on lake over 80 days.
- **Economic value of lowering intakes??**

Similkameen River Impacts

- Similkameen River enters Okanogan River below Zosel Dam;
- High Similkameen flow (> 10000 cfs) slows the
 Okanogan River (backwaters) or even reverses
 flow northward and potentially increases
 Osoyoos Lake levels;
- Okanagan River releases at Okanagan Lake Dam have been reduced in the past to reduce the impact of high peaks on the Similkameen.

Questions?