WORKING DOCUMENT VERSION 1

Appendix B - Summary of EFN-Setting Methods Used in Canada and Elsewhere

Table B-1 Summary of the major categories of EFN-setting methods used in Canada and their strengths and weaknesses (adapted from Linnansaari et al. 2013).

Categories / Common Methods	General purpose	Scale and Scope	Suggested Uses	Strengths	Weaknesses
 Hydrological BC Instream Flow Tennant and its derivatives (e.g. B.CModified Tennant) Percentage of Flow (POF), Sustainability Boundary Approach (SBA) and Presumptive Standard Alberta Desktop DFO Framework 	Examination of historic flow data to find levels that naturally occur and can be considered "safe" thresholds or within the range of natural variability patterns.	Whole rivers, applicable for regional- scale assessments. Mainly based on discharge data.	Useful for situations where the potential risk of impacts to aquatic ecosystems is low. Regionalization techniques can allow the transfer of data from gauged to un-gauged systems. A "percent flow" method assumes the availability of data from a gauged reference system.	Easy to implement because require little to no field work.	Do not scale with stream size or type. Risk that criteria will be applied across different geographic regions and river types, without sufficient understanding of their ecological implications.
 Hydraulic rating Wetted Perimeter Inflection Point Flowing Perimeter R-2 Cross 	Examination of change in a hydraulic variable, e.g. "wetted width", as a function of discharge. The change is a proxy for the general quantity of fish habitat in a river.	Applied at a study site / river segment scale, up-scaling to whole river level based on the assumption of availability of "representative" sites. Methodology is river specific. Based on physical (hydraulic) characteristics. Some consideration of biological characteristics.	Can be used to validate other statistical analyses (primarily for periods of low flow). Can work well for site-specific, individual stream sections. Generally designed to be used in rivers with well-defined single channels.	Requires some field work and data to derive relationships between flow and specified hydraulic variables (e.g. wetted perimeter, depth, average velocity). Can be used for "low risk" situations when sufficient data exists for the river/site being assessed. Can be used as an increased safety measure or a benchmark with other methods. Inexpensive but river specific.	Not recommended as the sole method for studies requiring a high level of detail or which pose a significant ecological risk. Difficult to identify appropriate transects at which to collect data in braided channels. Criticized for lack of direct relationship with ecological processes and inability to quantify trade-offs between flow and ecological consequences. Can lead to a stable (i.e. "flat- lined") environmental flow regime, which may lead to degradation over time.

Categories / Common Methods	General purpose	Scale and Scope	Suggested Uses	Strengths	Weaknesses
 Habitat simulation modelling Instream Flow Incremental Methodology PHABSIM (Physical Habitat Simulation System) RYHABSIM (River Hydraulic and Habitat Simulation) EVHA (Evaluation de Habitat) RSS (River System Simulator) CASIMIR (Computer Aided Simulation of Habitat in Regulated streams) River2D MesoHABSIM MesoCASIMIR 	Examination of change in the amount of physical habitat based on selected variables and target species, as a function of discharge.	Applied at a study site (micro) / river segment scale (meso). Detailed assessment.	Useful for identifying trade- offs in physical habitat over a range of flows.	Can address river-specific issues in high-risk situations. Can provide a better spatial estimate of the potential impact of the project, when compared with hydrological / hydraulic methods. Can provide accurate estimates of flow regimes required to maintain physical integrity of habitat in river segments (i.e. wetted area, depth, discharge, and water velocity within that area). Resulting habitat-discharge relationship can be used as negotiating tool	Considerable amount of field work and expertise required time consuming and relatively expensive. Considerable modeling assumptions are made; not always validated and uncertainty is not often communicated. Misapplication of the results is reportedly common. May lead to uniform, stable ("flat-lined") prescriptions for the ecological flows required for fisheries. Criticized for lack of ecological specificity and uncertainty for habitat vs. species abundance relationship.
 Holistic Building Block Methodology (BBM) Downstream Response to Imposed Flow Transformation (DRIFT) Benchmarking Ecological Limits of Hydrologic Alteration (EOHA) 	Examination of flows based on multiple data inputs including expert opinion, leading to recommendations of flow regimes for all components of the riverine ecosystem. May include consideration of socio-economic objectives.	Whole rivers, applicable for regional or river specific scales. Flexible.	Useful for examining overall ecosystem function.	Encompasses physical, chemical, and biological variables. Flow alteration prescriptions are based on ecological considerations. Reliance on expert opinion, although this is viewed as a weakness by some. Can use multiple inputs, including other assessment methods. Each additional element adds incremental information and understanding.	Can be labour intensive, time consuming, and relatively expensive. Each additional element included in an analysis adds additional uncertainty.

