Warming up to (climate) change

Amber Manfree, PhD admanfree@ucdavis.edu

September 9, 2016 Okanagan Basin Water Board Annual Meeting

Professional background

- Research
 - Physical geography
 - Historical ecology
- Specialties
 - Spatial analysis
 - Cartography
 - Fish
 - Wetlands

Today's topics

- Climate change & California's drought
- Planning for change
 - Thinking like a landscape
 - Futurecasting 101
 - Emerging solutions

1. California drought

- Regional overview
- Effects

Photoshopped reconstruction of California c. 1850

http://bigthink.com/strang e-maps/557-the-firstsatellite-map-of-california-1851

Jay Lund

Water Resources

Hydrography

Climate change effects on precipitation

 No large changes in total annual precipitation (but some models say much drier)

- Mediterranean pattern will continue
 - most precipitation in winter and spring
- Big shifts from snow to rain esp. in mid-elevations
- 60-90% loss of snow pack in Sierra Nevada

= Big impacts to stream flows of snow-fed systems

Irrigated agriculture water sources

 Groundwater is backup for ag during droughts

 Most demand in Tulare basin

Groundwater Depletion, Especially in California's Tulare Lake Basin

SOURCE: What If California's Drought Continues? (PPIC, 2015), Figure 3. Data through 2009 from DWR; author estimates after 2009. Projections since 2009 may underestimate depletions since the onset of the latest drought (2012+).

Drought effects on groundwater

- Increases pressure on resource
- Increases management attention
- Groundwater regulation in early stages
- Tools like markets, water banking, and portfolio approaches needed

Some Reasons for Hope

Share of California employment (%)

 Human water use peaked?

 Economy depends less on water abundance than in past

 Agriculture robust due to groundwater reliance and diversified economy

- Water markets can shift use and civilize change

Source: Dr. Josue Medellin-Azuara/ UCD Center for Watershed Sciences

Climate change stream flow effects

More variable flows

- Peak flows

 larger (some years)
 earlier
- Base flows
 - longer
 - -lower

Climate change effects on streams

 Net loss of 60-99% cold water habitats

Range shift northward
 & upward

• Warmer streams favor non-native species

Status of California fishes 1975-2010 N=108 N=115 N=116 N=129 % Stable Vulnerable ESA listed Extinct

Listed fish species in 2013 = 28

https://californiawaterblog.com/20 13/12/26/the-esa-fish-and-me/

Extreme conditions push the envelope

- Reveal system weaknesses
- Force rethinking system structure
- Encourage preparedness

When is it a drought?

- Definition not set in stone
- Past 150 years cooler and wetter than average in the west, and planning is based on this record
- Recent "drought" is within range of normal variation in past 2,000 years
- Lack of long-term information misled planning, we may need to correct course

Droughts in western North America

- Occur over annual, decadal and longer time scales
- Recent drought coincided with historically high water demands

Researching landscape change

- Provides temporal perspective; brackets possibilities
- 100 200+ year analyses reveal processes
- Including environmental processes in natural resources management
 - Predictable (erosion)
 - Stochastic (fire, drought)

2. Thinking like a landscape

- Goal: cultivating landscape processes
 - Geomorphic
 - Habitat function, connectivity

Environmental processes

- In many locations, extreme events are
 - Normal
 - Healthy
 - Necessary
 - Define ecological parameters
 - Even if infrequent

Environmental processes

- Conceptualizing processes as "normal" rather than exceptional
 - Informs decision making
 - Encourages development that accommodates systems
 - Less long-term cost
 - Multibenefit function

Reconciliation Ecology

- Reserve system not sufficient to achieve cultural environmental goals
- Must create <u>functional</u> habitat in humandominated landscapes to meet goals
- Reconciles human environmental demands with requirements of natural systems

Reconciliation Ecology

- Goals
 - Restoring function
 - Multi-benefit
 - Risk reduction
 - Resiliency
- Examples
 - Birdhouses, butterfly gardens
 - Flooding farms in off-season to create wetlands for fish and birds

4. Emerging solutions

- Case studies
- Quelling controversy with communication

Environmental flows

• Putah Creek

Environmental flows

Putah Creek

- Precedent-setting environmental flows case
- Water needed to meaningfully improve habitat with environmental flows typically very small relative to other users
- Paired with in-stream habitat improvements
- Water budgeting
 - Define flow needed to sustain target species of fish
 - Accounting system for tracking water availability and use

Knaggs Ranch

Jacob Katz

- Knaggs Ranch
 - Former floodplain of Sacramento river, now part of flood bypass system which only receives flow in extreme high water events
 - Rice fields have been experimentally flooded
 - Shallow water works like a solar cell powering ecosystems

- Knaggs Ranch
 - Salmonids reared on floodplain grow several times as fast as those in adjacent river

- More likely to survive perilous trip to ocean
- Flooded fields also benefit birds

 San Joaquin - Accounting for environmental benefits

- San Joaquin Accounting for environmental benefits
 - Only farmland value typically counted is crop yield
 - Flooding fields can:
 - Reduce flood risk in developed locations
 - Recharge aquifer
 - Provide habitat
 - May reduce crop yields; can be offset by gov't
 - Accounting for ALL associated factors can tip the scales in favor of multi-benefit management

Napa River

- Watershed-scale conservation
- Wide variety of stakeholders
- Numerous projects plus ordinances and outreach
- 20+ year process

Napa River

- 1. Rutherford Reach
 - Landowner-led
 - Financed by landowners and gov't
 - Benefits: TMDL compliance, risk reduction, PR boost
- 2. Oakville to Oak Knoll
 - Similar to Rutherford Reach
- 3. Napa River Flood Protection
 - Local water agency led elaborate stakeholder process
 - "Room for the River" model

Napa River

- 4. Tidal wetland restoration
 - US Fish and Wildlife, land trust, water agency buy and restore former salt evaporation ponds
- 5. Local environmental policies protect watersheds
 - Erosion control ordinance
 - Developable area per parcel limited to 60 %
 - Most projects subject to public review process
- No change in site hydrograph for new urban projects
- Environmental ed campaigns

Summary

- Adversarial business vs. environmentalist narrative unproductive, simplistic
- Reconciliation, multibenefit thinking more productive
- Tailor to socioenvironmental system

Napa in stream restoration in urban area

• Demystifying the prediction process

1. Track change

Sediment accretion in a shallow wind-affected bay

- 1. Track change
- 2. Look for patterns

...Oddly shaped embayment?

...Repeated in other locations

- 1. Track change
- 2. Look for patterns
- 3. Identify drivers

...Suisun Marsh next to the 4th windiest place in California

Processes pair with land forms

Percent of wind from each direction

Driver echoed in landform shape

- 1. Track change
- 2. Look for patterns
- 3. Identify drivers
- 4. Describe a few reasonable trajectories

Amber Manfree

- 1. Track change
- 2. Look for patterns
- 3. Identify drivers
- 4. Describe a few reasonable trajectories
- 5. Bookend with extreme cases

Amber Manfree

Aggressive hardening of the landscape

Hybrid human use environmental management

Aggressive greening of the

Concluding remarks

- Change is not the enemy!
- Think like a landscape
- Attitude matters
 - Balance human and ecosystem needs
 Possibly mobilize like WWII?

https://newrepublic.com/article/135684/declare-war-climate-change-mobilize-wwii

 Making room for processes can make extreme environmental events less frequent and less damaging

Thank you!

Amber Manfree

admanfree@ucdavis.edu

EXTRA SLIDES

"Not all streams are created equal—some streams are disproportionately important for supporting biological diversity. Be strategic in conserving places that matter most. "

- Ted Grantham

2015 Estimated Agricultural Drought Impacts

Description	Impact	Base year	Percent
Drought water shortage (million acre-ft)	8.7	26.4	33%
Groundwater replacement (million acre-ft)	6.0	8.4	72%
Net water shortage (million acre-ft)	2.7	26.4	10%
Drought-related idle land (acres)	540,000	9 million*	6%
Crop revenue losses (\$)	\$900 million	\$40 billion	2.3%
Dairy and livestock revenue losses (\$)	\$350 million	\$13 billion	2.7%
Costs of additional pumping (\$)	\$590 million	\$780 million	75.5%
Net revenue losses (\$)	\$1.8 billion	54 billion rev.	3.3%
Total economic impact (\$)	\$2.7 billion	NA	NA
Direct job losses (farm seasonal)	10,100	200,000#	5.1%
Total job losses	21,000	NA	NA
ASA-ARC estimate of normal Central Valley idle land is 1.2 million acres			Dr.

[#] Total agriculture employment is about 412,000, of which 200,000 is farm production.

* N

Dr. Josue Medellin-Azuara