

Endocrine Disruption (Hormones, PCPs)

Special Risks from Endocrine and Metabolic Disruptors?

- Human population growth
- Exposure of surface water to human wastes
- Explosion in use of metabolic regulators (drugs)

Explosive Use of Drugs

- Decadal rate of increase 25% per year (\$)
- e.g. in two week interval ~60% of people will use pharmaceuticals
- Avg ~\$30-40 per prescription

Drugs into Water

- Metrics are poor, variable activity, mass dosage, cost
- 0.04 Prescriptions/m³, globally averaged at developed world levels. (25 m³/ subscription)
- Non-uniformly distributed!!!

Population/Water Supply

- Worst case is large population w/small water supply (Okanagan?)
- Following the Pattern recognition regulation

Outline

- Study Background
- Study Objectives
- Results
- Potential concerns
- Application to other areas

Background

- Estrogens are Emerging Contaminants
- Okanagan has among Canada's lowest per capita water supply -- lowest dilution for wastewater

Estrogens

- Estradiol -17 β -estradiol (E2) the most potent naturally occurring estrogen
- Estrone (E1) a metabolite of E2
- Estriol (E3) mainly produced during pregnancy
- Ethinylestradiol (EE2) synthetic estrogen, the most commonly used medication.
 - One of most potent estrogenic compounds (Thorpe et al, 2003)
 - These three estrogens are generally considered to be the principle EDCs of concern in wastewater effluents (Gomes et al., 2003; Hanselman 2003; deMes et al., 2005; Falconer et al., 2006).

Study Objectives

- Measure estrogens in effluent and receiving waters
- Calculate degradation rates in receiving waters

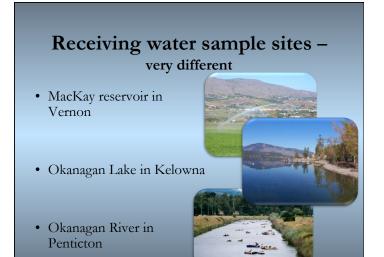
Environmentally Relevant Concentrations

- Concentration of 5ng L⁻¹ (*Estradiol*) caused total collapse of fish population (Kidd, 2007) fish should not live in wastewater
- British Columbia Ministry of Environment guideline for 17 $\alpha\mathchar`-$ ethinylestradiol
 - "30-d average concentration should not exceed 0.5 ng L⁴ with no single value to exceed 0.75 ng L⁴"

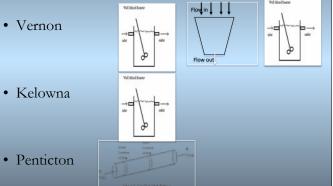
What is a ng/L?

One part per trillion (1 ppt) is a proportion equivalent to one-twentieth of a drop of water diluted into an Olympic-size swimming pool

Study Sites


- 3 large centers with similar WWTP, but different discharge Methods
- Very low per capita water supply and low precipitation
- Long residence time of Lakes

Sample Site Information


- All Biological Nutrient Removal Plants (BNR)
 Designed for Nutrient and Pathogen removal
- Vernon Sample Sites

 Plant effluent= 11500 m³ /day (2104.5 USGPM)
- Kelowna Sample Sites
 Plant effluent = 35000 m³ /day (6405 USGPM)
- Penticton Sample Sites
 - Plant effluent = 10000 m³ /day (1830 USGPM)

Receiving water scavenging mechanisms

• Vernon

Total estrogens in wastewater treatment effluents DL = approximately 0.07 ng/L

Vernon Water Reclamation Centre 0.5-27.9 Kelowna Wastewater Treatment Facility 3.0 - 148.4 Penticton Wastewater Treatment Plant < 0.07 - 35.0

	s in receiving waters pproximately 0.07 ng/L
MacKay Reservoir	0.3-1.3
wackay neservon	
Vernon Tailwaters	Non Detect
	Non Detect Non Detect

MacKay Reservoir - Vernon Effluent

- Approximate scavenging rate calculated from reservoir concentration, treatment plant loading and reservoir water balance
- $k = 0.007 day^{-1}$
- Half life = 200 d

MacKay Reservoir - Vernon Effluent

Season	Half life, d
Spring	35
Summer	60
Fall	150
Winter	650

Estrogens in Tailwater - Vernon Effluent (irrigation returns)

> Kalamalka/Okanagan Lakes Non-detectable

Okanagan Lake - Kelowna Effluent

Extensive sampling eventually detected a very dilute 'plume' (conductance, and fluorimetry)Levels of estrogens throughout the lake were undetectable

Okanagan River - Penticton Effluent

- Travel time avg. 5h (3-9 h)
- No measured degradation.
- Values are close to dilution

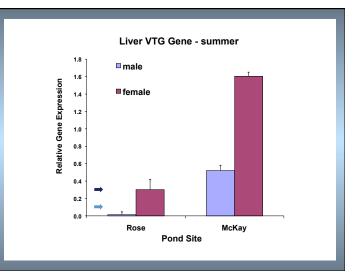
Some Conclusions

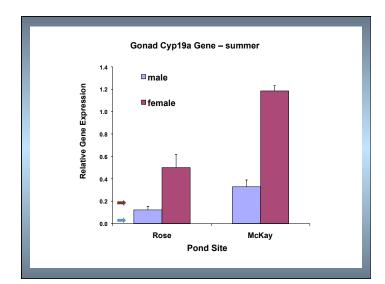
- Wastewater treatment plants are releasing estrogens
- There are environmental mechanisms that can reduce estrogens in receiving waters (microbial degradation)
- In a reservoir environment it takes about 100 days for these compounds to degrade by 50% and further polishing occurs through groundwater infiltration and then dilution

Applications to other systems

- The decay rate can be used to calculate what might be expected in other systems
- Multiple levels of "treatment" are optimal to cleanup estrogens (ie. Vernon)
- Rivers provide less dilution volume and lower residence time for polishing of estrogens in wastewater. Treatment plan options? (average residence time of surface water on continents is <100d

What is in the drinking water?


• So far the numbers indicate concentrations in receiving waters would appear to be negligible for human consumption but very little research on chronic low dose exposure outcomes


Ecosystem concern

- Exposure of aquatic organisms is chronic (like air pollution to humans).
- Hermaphroditic fish, alligators etc.

Effects of chronic exposure to wastewater effluent on gene expression in goldfish -- assays of estrogenic chemicals B. Mathieson and J. Curtis

UBC Okanagan Campus September 2, 2011

