

Okanagan Population Growth (1994 - 2004)												
340,000 - 320,000 - 300,000 - 280,000 -	++++++++++++++++++++++++++++++++++++++									1(U)		
260,000	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	

Climate Change: less supply, more demand

- ≻ More rain
- Less snow
- ➤ Earlier melt
- > Hotter summers
- > More evaporation

Fundamentals

- > Everyone needs water
- > We are all connected along the mainstem
- The lake may be 600 ft deep, but we can only use the surface
- The economy suffers even from patchy shortages
- We have to look at whole system and find ways to work together

Project Overview – Phase 2

January 2007 - December 2009

Providing science for...

- water management
- land use planning
- water allocation

High-level objectives:

- · analyze water supply and use
- evaluate future climate
- guide adaptation

Project Plan Phase 2: Evaluate Current and Future Needs • water supply and management, allocations, actual use • models link lakes and river sub-basins • water accounting to balance supply and demand • scenarios of climate change and population growth Phase 3: Develop Tools, Recommendations, Policy • consultation with local & senior governments • recommendations for policy changes • support for local area studies

Water Budget Framework AVAILABLE WATER + INSTREAM NEEDS =

SUPPLY MINUS DEMAND

{Natural Groundwater Supply & Return Flows + Natural Surface Supply & Reservoir Inflows + Direct Precipitation on the Lakes + Water Transferred from Other Basins}

MINUS

{Surface Intakes + Groundwater Pumping + Evaporation }

Demand Model

Property-by-Property water demand from agriculture, homes, industry, golf courses, parks

BC Ministry of Agriculture and Lands & Agriculture and Agri-Food Canada

7/27/2009

Hydrology Model

- Climate
- > Topography
- Land Cover
- Mountain Pine Beetle
- Streams & Lakes
- Control Structures
- ≻ Soils
- > Snow
- Groundwater

<page-header><section-header><section-header>

Basic Products

- Okanagan water database
- State-of-the-Basin reports
- Hydrologic models for surface and groundwater
- GIS irrigation and urban demand model
- Water accounting model with climate scenarios
- Water information reference library

How can we use this information?

- Decision-making, education, policy discussions, *etc.*
- Okanagan water management planning
- Coordinated Drought Planning?

Coordinated Basin-wide Drought Planning

Does upstream use affect downstream supply?

Cooperative Agreements

- Default is priority-based regulation
- > Possible to form other agreements
- > Example: Summerland Water Use Plan
- > Two Layers:
 - Technical Study of Hydrology
 - Cooperative Agreements

Technical & Policy Components of Coordinated Drought Planning • How are sub-basins and reservoirs connected? • Where is the greatest demand? • Human vs. Environmental Needs • Existing Allocations/Priority Rights • Linked Utility Drought Plans, Water Use Plans • Drought Response Agreements

Also Needed for Coordinated Drought Planning

- > Better drought communication system
- > Water Use Reporting of surface & groundwater
- > All utilities need Drought Plans
- > Water Use Plans for sensitive streams
- Commitment to working together
 Within your utility area
 - With neighbouring water utilities
 - With other communities in the Basin

Better Drought Communication

- > MoE Drought Website?
- > Early warning on snow-pack, lake levels
- > Water & meteorology data and interpretation
- Supports purveyor communication with customers
- > Helps purveyors prepare in advance

Integrated Water Use Reporting

> Groundwater at risk

- Need to track all large water extractions
- Surface = Groundwater
- Web-based interface
- Replace current system

What the Water Supply & Demand Project can and can't do

- Provide Basin-Scale insight to overall water availability
- Gather and report water information
 Groundwater, surface water, land cover, etc.
- > Data on sub-basin scale is low-resolution
- Need local detail for drought plans, water use plans

Questions? Contact <u>Anna.Warwick.Sears@OBWB.CA</u> Website: www.obwb.ca