# **CHAPTER 9**

# **Equesis Creek**

## 9.1 <u>GENERAL DESCRIPTION</u>

Reference is made to the Key Map, (Figure 9.1) and the Schematic (Figure 9.2).

Equesis Creek has a natural watershed of 77 square miles and is the least developed of all the tributaries under study. It is a simple system with one major headwater lake, no significant tributaries and no diversions Into the watershed. The main valley bottom and river delta provides most present and potential irrigable land. Being largely Indian Reservation, nearly all water licencing is held by the Department of Indian Affairs.

In 1970, the area served an estimated population of 90 persons and contained 356 acres of irrigated land. Much of this area is outside the natural watershed as shown by Figure 9.1.

The headwaters of Equesis Creek are located approximately 16 miles northwest of its mouth on the ridge separating the Okanagan and Thompson River watersheds. The highest mountain on this ridge is Tuktakamin Mountain which reaches an elevation of 5811 feet. Flow from the mountain ridge and a much less steep area to the south soon reaches Pinaus Lake (CP1). This lake (elevation 3355 feet) with a surface area of 9500 acres is one of the largest natural lakes in the whole Okanagan. Outflow from Pinaus Lake passes, through a small unnamed lake before entering a deepcut valley which leads fairly directly to Okanagan Lake. Only minor tributaries such as Ewer (MP1), Banks, McGregor and Musgrave join Equesis Creek along its course.

As shown by the area-elevation curves on Figure 14.2, the median elevation of Equesis Creek is 4000 feet. Apart from Vernon and Kelowna Creeks which are lower, this is the lowest median elevation of creeks under study in this chapter. Land rises steeply for the first 2000 feet above Okanagan Lake leaving only 20% of the watershed below 3000 feet elevation. Thereafter, average land slopes decrease at a fairly constant rate, over 70% of the subbasin being between 3000 and 5000 feet elevation. The final 10% of the area includes the mountain peaks which rise to 5800 feet.

Apart from the region near its mouth where the valley widens, the area's

tributary to the lower reaches of Equesis Creek are unremittingly steep. Between elevation 4000 and 5000 feet there exists, a relatively flat upland plat-eau which is tributary to Pinaus Lake.

The profile of Equesis Creek (Figure 14.3) shows that it rises at a slowly increasing gradient averaging 152 feet per mile to Pinaus Lake.

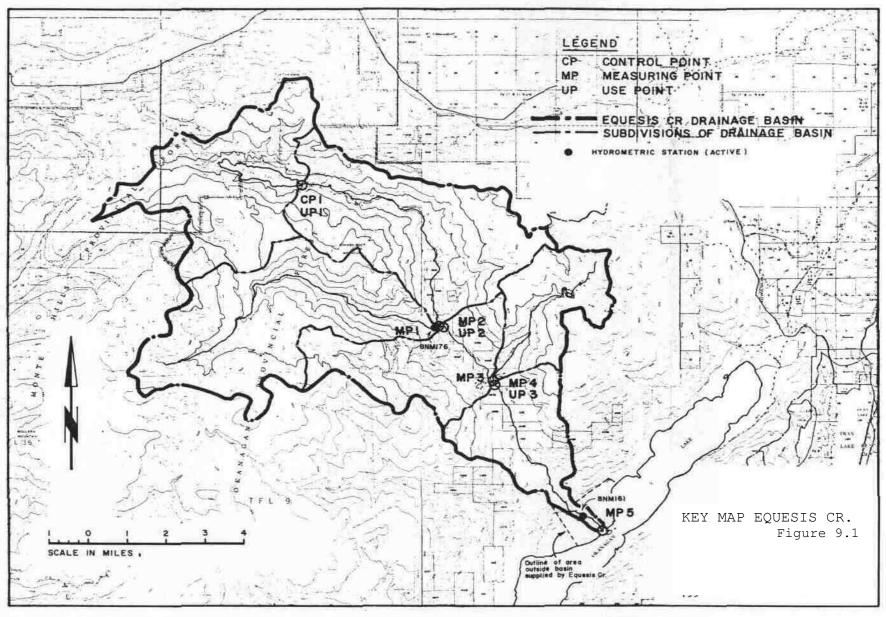
There are two hydrometric stations within the Equesis Creek system and these are located on Figure 9.1. One station (8NM176) on Ewer Creek provides only occasional measurements. The more significant hydrometric station is 8NM161 located near the creek mouth. Its records are daily all-year but are of short duration. Hydrographs of mean monthly flows passing this station have been plotted on Figure 4.8.

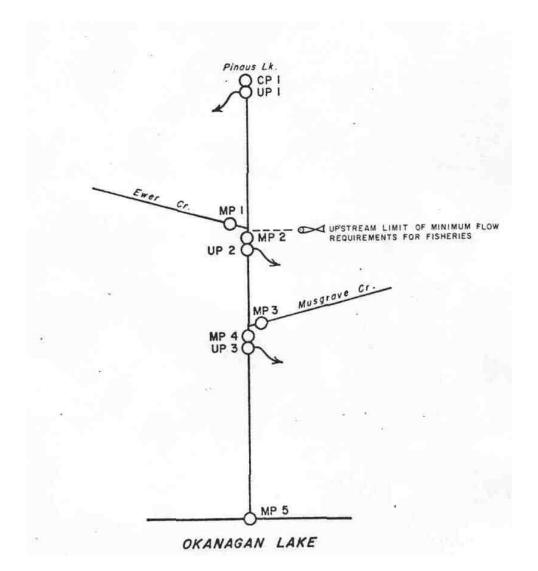
#### 9.2 <u>HISTORICAL BACKGROUND</u>

There are no organized water users communities in the Equesis Creek watershed. Mater licences are held by the Department of Indian Affairs and Individual farmers.

Exploitation of the water source for irrigation purposes began in earnest around 1922 when an earth fill dam was built on Pinaus Lake. Farmers occupying the valley bottom of upland stretches of Equesis Creek diverted the water directly from the creek for use nearby. The Indian band occuping the alluvial fan of Equesis Creek diverted their water for considerable distances by wood flume. At the present time, the ditch method of irrigation is employed although it is expected that at least some areas will be converted to sprinkler irrigation in the near future.

In 1953 the Department of Indian Affairs built a new dam on Pinaus Lake, raising its storage capacity to the present 2156 acre feet.


## 9.3 LAND USE AND WATER REQUIREMENTS


The Equesis Creek watershed serves two small agricultural groupings, one Indian, one non-Indian.

The non-Indian grouping serves 204 acres of irrigated land in the valley bottom of Equesis Creek at an elevation of around 1900 feet. Their water is assumed to be diverted at UP 1 and UP 2.

The Indian grouping occupies a tiny settlement near the Equesis Creek delta. An estimated 204 acres of land is irrigated by diversion at UPS. There are, in fact, four diversion points at which water is taken by ditch to provide

198





# EQUESIS CR. SCHEMATIC

rill irrigation to areas north and south of the creek. A piped, pressurized domestic water system serves approximately 60 persons near Six Mile Creek.

Plans have been prepared for the conversion of roughly 100 acres of ditch-irrigated land to sprinkler irrigation. To date, these plans have not been implemented.

It is to be noted that, because the coarse alluvial soil is very pervious, serious water losses occur in transit by the ditch irrigation method. Conversion to a piped system would result in marked economics in the quantity of water required.

Equesis Creek and Pinaus Lake are important to the propagation of Rainbow Trout and Kokanee. During winter, the gate on Pinaus Lake is left open to create flow and prevent winter kill of fish downstream.

The computer print-outs are based on a program which does not take account of the small domestic population within the watershed. Input data is shown on Table 9.1.

| Area Served                   | Area<br>Irrigated<br>(acres) | Population<br>(approx.)<br>(persons) | Irrigation<br>(ac. ft.) | Diversion<br>Domestic<br>(ac. ft.) | Total<br>(ac. ft.) |
|-------------------------------|------------------------------|--------------------------------------|-------------------------|------------------------------------|--------------------|
| Director of<br>Indian Affairs | 152                          | 0                                    | 435                     | 0                                  | 435                |
| Other                         | 204                          | 0                                    | 585                     | 0                                  | 585                |
| Total                         | 356                          | 0                                    | 1020                    | 0                                  | 1020               |

# TABLE 9.1 WATER USERS IN THE EQUESIS CREEK WATERSHED (1970) (COMPUTER INPUT DATA)

Consumptive use diversions as listed above are assumed to result in no return flow within the Equesis Creek sub-basin. However, consumptive use diversions are expected to provide a return flow to Okanagan Lake. The amount of return flow varies with the type of use and for irrigation is estimated at 50% of diversion.

From the above, water utilization in terms of the amounts of consumed water and return flow within the Okanagan Lake Basin may be tabulated as follows (Table 9.2):

| Requirements               | Diversion<br>for<br>Consumptive Use<br>(acre feet) | Consumed<br>Water<br>(acre feet) | Return Flow<br>to Okanagan<br>Lake<br>(acre feet) |
|----------------------------|----------------------------------------------------|----------------------------------|---------------------------------------------------|
| Irrigation                 | 1020                                               | 510                              | 510                                               |
| Domestic and<br>Waterworks | 0                                                  | 0                                | 0                                                 |
| Industry                   | 0                                                  | 0                                | 0                                                 |
| Totals                     | 1020                                               | 510                              | 510                                               |

TABLE 9.2 WATER UTILIZATION IN EQUESIS CREEK (1970)

A monthly breakdown of diversion requirements during the irrigation season is as shown on Table 9.3.

| Month   | Туре        | Director<br>of Indian<br>Affairs | Other | Total |
|---------|-------------|----------------------------------|-------|-------|
| A       | Agriculture | 0                                | 0     | 0     |
|         | Domestic    | 0                                | 0     | 0     |
|         | Industry    | 9                                | 0     | 0     |
| M       | Agriculture | 88                               | 66    | 154   |
|         | Domestic    | 0                                | 0     | 0     |
|         | Industry    | 0                                | 0     | 0     |
| J       | Agriculture | 146                              | 109   | 255   |
|         | Domestic    | 0                                | 0     | 0     |
|         | Industry    | 0                                | 0     | 0     |
| J       | Agriculture | 146                              | 109   | 255   |
|         | Domestic    | 0                                | 0     | 0     |
|         | Industry    | 0                                | 0     | 0     |
| A .     | Agriculture | 146                              | 109   | 255   |
|         | Domestic    | 0                                | 0     | 0     |
|         | Industry    | 0                                | 0     | 0     |
| Total . |             | 526                              | 393   | 919   |

TABLE 9.3 DIVERSION REQUIREMENTS ON EQUESIS CREEK (1970) GIVEN IN ACRE FEET

In order to acquire rights over the use of water, most users, acting either

individually or collectively in an irrigation district, have maintained water licenses for storage and diversion granted by the Crown, in right of the Province. Licenses provide their holder with rights over the stated amount of water and, in cases of shortage, the older license takes precedence over the newer.

Current water licenses in 1970 for both storage and consumptive use are as listed on Table 9.4  $\,$ 

|                                  | Total<br>Licensed    |                          | Licensed D            | iversion              |                     | Computed<br>Diversion    |
|----------------------------------|----------------------|--------------------------|-----------------------|-----------------------|---------------------|--------------------------|
| Area Served                      | Storage<br>(ac. ft.) | Agriculture<br>(ac. ft.) | Domestic<br>(ac. ft.) | Industry<br>(ac. ft.) | Total<br>.(ac. ft.) | Requirement<br>(ac. ft.) |
| Director of<br>Indian<br>Affairs | 1590                 | - 2385                   | 0                     | 0                     | 2385                | 435                      |
| Other                            | 600                  | 1044                     | • 0                   | 0                     | 1044                | 585                      |
| Total                            | 2190                 | 3429                     | 0                     | 0                     | 3429                | 1020                     |

|       |          | TAB | <u>LE 9.4</u> |       |        |
|-------|----------|-----|---------------|-------|--------|
| WATER | LICENSES | ON  | EOUESIS       | CREEK | (1970) |

# 9.4 <u>ESTIMATED NATURAL WATER SUPPLY</u>

Estimated natural water yields for the area are shown on computer print-out sheets, reproduced on Figure 9.3, (Dry Year), Figure 9.4, (Average Year) and Figure 9.5, (Wet Year).

In summary, the annual precipitation and natural runoff of the Equesis Creek Basin under the three types of year is as follows (Table 9.5):

|                 | Annual            | Runoff               |                           |                          |
|-----------------|-------------------|----------------------|---------------------------|--------------------------|
| Type of<br>Year | Kilo<br>acre feet | Inches<br>over Basin | Precipitation<br>(inches) | Remarks                  |
| Dry             | . 10.2            | 2.5                  |                           |                          |
| Average         | 17.8              | 4.3                  | 23.1                      | area =<br>76.9 sq. miles |
| Wet             | 34.1              | 8.3                  |                           |                          |

<u>TABLE 9.5</u>

ESTIMATED NATURAL WATER YIELDS FOR EQUESIS CREEK SUB-BASIN

Note: Abstracted from computer print-out data which is based on simulated flows for period 1921-1970.

Date Of Print-out: Dec 7, 1972

#### FLOWS IN AC. FT.

| LO | CATIO | N  | K. AC. | 3    | F    | M    | Å    | • M    |        | 1     |      | s    | ٥    | N    | D      | YEAR   |
|----|-------|----|--------|------|------|------|------|--------|--------|-------|------|------|------|------|--------|--------|
|    | CPOA  | 1  | 9.5    | 38.  | 40.  | 57.  | 124. | 1122.  | 874.   | 122.  | **.  |      | 44.  |      | **.    | 2307.  |
|    | MPO4  | ı, | 12.4   | 57.  | 77.  |      | 100. | 2271.  | 1 299. | 187.  |      | 76.  | 76.  | 76.  | 76.    | 4532.  |
|    | MP0A  | 2  | 33.4   | 123. | 155. | 190. | 387. | 41 06. | \$211. | +00.  | 166. | 151. | 151. | 150. | 1 50 . | #330.  |
|    | MPDA  | 3  | 4.5    | 16.  | 17.  | 25.  | 56.  | 396.   | 185.   | 51.   | 17.  | 17.  | 17.  | 17.  | 17.    | 829.   |
|    | NPOA  | ٠  | 44.2   | 154. | 191. | 238. | 493. | 4952.  | 2625.  | 501.  | 201. | 165. | 185. | 184. | 184.   | 10094. |
|    | RPDA  | 5  | 49.2   | 157. | 195. | 242. | 506. | 5014.  | 2653.  | \$11. | 204. | 188. | 188. | 187. | 187.   | 10230. |

EQUESIS CR. DRY YEAR (NATURAL FLOW) Figure 9.3

AREA IN

-

Bate Of Print-auti Bec 7, 1972

FLOWS IN AC. FT.

| CATION |   | K. AC. |      | F    | M      | Α.,  | M     | J     | J           |      | s    | 0    | N    | D      | YEAR   |   |
|--------|---|--------|------|------|--------|------|-------|-------|-------------|------|------|------|------|--------|--------|---|
| CPDA   | 1 | 9.5    |      | 82.  | 105.   | 229. | 1948. | 904.  | 219.        | 80.  | 77.  | 77.  | 77.  | 77.    | 4025.  |   |
| MPDA   | , | 12.4   | 93.  | 125. | 144.   | 272. | 3614. | 2045. | 308.        | 144. | 124. | 124. | 122. | 122.   | 7237.  |   |
| RPOA   | 2 | 33.4   | 216. | 272. | 333.   | 713. | 6931. | 3674. | 715.        | 282. | 259, | 259. | 258. | 258.   | 14170. |   |
| NPOA   | 3 | +.5    | 30 . | 32.  | 40.    | 106. | 728.  | 340.  | 95.         | 31.  | 31.  | 31.  | 31.  | . 31 . | 1531.  |   |
| NPOA   | • | 44.2   | 276. | 340. | 423.   | ¥22. | 8473. | 4421. | <b>007.</b> | 347. | 323. | 323. | 322. | 327.   | 17398. | - |
| MPDA   | 5 | 49.2   | 284. | 351. | 4 36 . | 963. | 8653. | 4500. | 941.        | 355. | 331. | 331. | 330. | 330.   | 17805. |   |

EQUESIS CR. AVERAGE YEAR (NATURAL FLOW)

Figure 9.4

|          |   |         |       |       |        |       |        |       |         |      |      | 14     |      |              |        | Date Of Print- out<br>Dec. 7, 1972 |
|----------|---|---------|-------|-------|--------|-------|--------|-------|---------|------|------|--------|------|--------------|--------|------------------------------------|
|          | 1 | AREA IN |       |       |        |       | F      | ows   | IN A    | C FT |      |        |      |              |        |                                    |
| LOCATION |   | K. AC.  |       | F     | M      |       | м      | J     | J       | ۸    | S    | 0      | N    | D            | YEAR   |                                    |
| CPDX     | • | 4.5     | 1284  | 155.  | 198.   |       | 3811.  | 1805. | .150    | 150. | 145. | 149.   | 149. | 145.         | 7495.  |                                    |
| RPDA     | 1 | 12.4    | 167.  | 223.  | 257.   | 506.  | 6204.  | 3470. | \$ 56 . | 248. | 716. | 216.   | 214. | 214.         | 12492. |                                    |
| APU K    | t | 33.4    | \$75. | \$21. | 835.   | 1439. | 12580. | 6605. | 1399.   | 9211 | 484. | - 484. | 4031 | <b>483</b> , | 20192. |                                    |
| MPD A    | a | 4.5     | 60.   |       | .00    | 215.  | 1433.  | .000  | 192.    | 60.  | 60.  | 60.    | 60.  | 60.          | 3013.  |                                    |
| SPOR     | • |         | \$39. |       | 8 20 1 | 1898. | 19767. | 8983. | 101.20  | 0925 | 0141 | 01+1   |      |              | 32668. | -                                  |
| MPOA :   | 5 | 49.2    | \$71. | 702.  | 861.   | 2049. | 16354. | 8342. | 1939.   | 679. | 641. |        | 639. | 639.         | 34060. |                                    |
|          |   |         |       |       |        |       | - 192  |       |         |      |      |        |      |              |        |                                    |

EQUESIS CR. WET YEAR (NATURAL FLOW)

# 9.4.1 <u>Storage</u>

Reference is made to Figure 9.2.

In a climate of spring floods and summer droughts it is necessary to store a high proportion of total available water so that it may be used when needed.

As a general rule, in other tributaries storage is approaching maximum development and there is an ever increasing demand for more water. Such is not the case on Equesis Creek which is blessed with a large natural lake to provide storage. Also, since most undeveloped land is within an Indian Reservation, there is a subnormal pressure to develop land and demand increased water supply. This provides an excellent climate in which the Department of Fisheries can enhance an already desirable fishing area.

#### 9.4.2 <u>Pinaus Lake</u>

This is the only major lake in the watershed. It is owned and controlled by the Department of "Indian Affairs with the cooperation of the local white farmers. The low dam, of concrete gravity design, was built in 1953 to replace an earlier dam built around 1922. The spillway is at elevation 3355.4 feet. The control works consist of a 24 inch culvert with an outlet invert set at elevation 3350.0 feet. This provides a maximum drawdown of 5.4 feet.

Hydraulic information on Pinaus Lake is tabulated as follows (Table 9.6)

|           | Drainage        | Live                   | Surface         | Annua        | al Natural Ri<br>(acre-feet) | unoff       |
|-----------|-----------------|------------------------|-----------------|--------------|------------------------------|-------------|
| Reservoir | Area<br>(acres) | Storage<br>(acre feet) | Area<br>(acres) | ,Dry<br>Year | Average<br>Year              | Wet<br>Year |
| Pinaus    | 9500            | 2156                   | 400             | 2307         | 4025                         | 7495        |

TABLE 9.61970 STORAGES IN THE EQUESIS CREEK SYSTEM

It win be noted that there appears to be a very adequate supply of natural runoff, even in a drought year.

Methods of operation are by no means rigid, but are estimated to follow the pattern outlined on Table 9.7.



Photo 37 PINAUS LAKE - Looking West (Sept. 12, 1973) Equesis Creek System



Photo 38 KING EDWARD LAKE - Looking North (Sept. 12, 1973) Vernon Creek System

| Reservoir<br>Name | Reservoir<br>Capacity | J  | F  | м  | A  | M   | J   | J  | A  | s  | 0  | N  | D  |
|-------------------|-----------------------|----|----|----|----|-----|-----|----|----|----|----|----|----|
| Pinaus            | 2156                  | 35 | 35 | 35 | 35 | 100 | 100 | 78 | 57 | 35 | 35 | 35 | 35 |

TABLE 9.7RULE CURVE VALUES FOR EQUESIS CREEK RESERVOIR

Explanation; For any given month -

- 1. Percentages shown refer to active storage occupied by water at end of month, e.g., 30% storage occupied by water at end of March.
- 2. When rule curve value is exceeded, all excess water is released.
- 3. When rule curve value is not achieved, only stated water requirements are released.

4. Information based on local records of water users.

The above rule curve have been used in computer programming for the production of print-outs showing regulated flows.

At the 1970 stage of development, little special consideration is given to the operation of storage for Fisheries or other non-consumptive use.

## 9.4.3 <u>Residual Flows</u>

When natural flow is affected by storage changes, diversions to or from the area and withdrawals for irrigation, domestic or industrial purposes, the resulting creek flow is called the "residual flow". These residual flows, for various selected points and three types of weather year at 1970 development, are shown on computer print-outs. They are reproduced as Figure 9.6 (Dry Year), Figure 9.7 (Average Year), and Figure 9.8 (Wet Year).

Reference to these figures will show that residual flows immediately upstream and immediately downstream from the selected point are given. The difference is the amount diverted at the point for consumptive use. It will be noted that there are no "demand deficiencies" at the 1970 stage of development, even in a "dry" year.

Reference to Figure 9.9 and 9.6 will show that, based on Department of Fisheries estimates of need, there would be a considerable shortage of water during winter for non-consumptive use. In the winter of a "Dry" year, when no diversions for irrigation are being made, it appears that Fisheries water shortages range up to 60% of their stated requirement. Even in an "Average"

ì

|                      |   | JAN   | FER  | -     | APR   | HA Y  | JUNP      | JULY   | AUS       | SEPT  | DCT    | NOY     | DFC   | ANNUAL |
|----------------------|---|-------|------|-------|-------|-------|-----------|--------|-----------|-------|--------|---------|-------|--------|
| ONTROL POINT         |   | 755.  | 755. | 755.  | 755.  | 1037. | 2156.     | 1602.  | 1229.     | 755.  | 755.   | 755.    | 795.  |        |
| CASUNING POINT       | 5 |       |      |       |       |       | Townson . |        |           |       |        |         |       |        |
| EFICIENCY (FISH)     |   | 203 - | 165- | 117.  | 305.  | 0:    | 2040.     | 130.   | ****      | 560.  | 292.   | 172.    | 172*  | 1121.  |
| SF POINT             |   |       |      |       |       |       |           |        |           |       |        |         | 1.000 |        |
| MANTA INSTICATION    |   | 0.    |      | 0.    | 0.    | 40.   | 64.       |        | 66.       | 76.   |        |         |       | 764 .  |
| H HA HO. DOW STIC    |   | 0.    |      | 0.    | ٥.    | 0.    | ۰.        | 2.     | a.        | 0.    | ٥.     | 8.      | 0.    |        |
| FRANC, INCUSTFING    |   | 8.    | o.   | 0.    | 0.    | 40.   | 0.        | 0.     | 0.<br>60. | 20.   | e -    | ę.      | a.    | 204.   |
| La. petaria          | - | 13.   | 45.  |       | 176.  |       | 211.      | 505.   | 397       | 518.  |        | **:     |       | 2307.  |
| LOS. OCENSTREAM      |   | 15 .  |      | 57.   | 124.  | 0.    | 189.      | \$10.  | 431.      | 492.  | ***    | 44.     |       | 2041.  |
| FAND, DEFICIENCY     |   | o.,   | 0.   | 0.    | Q.    | 0.    | 0.        | 0.     | 0.        | 0.    | 0.     | 0.      | 0.    | 0.     |
| EFICIENCT            |   | 0.    | 9.   | 0.    | 0.    | 0.    | 0.        | 0.     | 0.        | 0.    |        | 9.      | ٥.    | 28     |
|                      | - |       |      |       |       |       |           |        |           |       |        |         |       |        |
| SE POINT             | 1 | 1.00  |      |       |       | 1.4.4 |           |        |           |       |        |         | 0.    | \$97.  |
| DE WAND. OCHESTIC    |   |       | 2.   | 0.    | °.    | 45.   | 74.       | 74.    | 74:       | 30.   | o.     | 2.      | 0.    | 0.     |
| DENAND. INDUSTRIAL   |   | 3:    |      |       |       | a.    | 0.        | 0.     |           | 0.    |        |         | 2.    | 2.     |
| DEWAND. TOTAL        |   |       | 0.   | a.    |       | n.,   |           |        |           | o.    | ::     | 2:      |       | 197.   |
| LOR. UPSTHEAM        |   | 121.  | 150. | 120.  | 30.7. | 24111 | 74.       | 74.    | .74:      | 30 .  |        |         | 150.  | 8076 . |
| FLOR. UNITASTORAN    |   | 121.  | 156. | 120.  | 147.  | 2914. | 1877.     | R.044. |           | 500.  | 150.   | 150.    | 150.  | 8076 - |
| DEMAND. DEFICIENCY   | - |       |      |       |       |       |           |        | - n -     | - 0   |        | - 0     |       |        |
| WFICIENCY (FISH)     |   | 237.  | 204  | 170 - | 0.    | 0.    | 0.        | 0.     | 0.        | 0.    | 330.   | 210 .   | 210 - | 1361.  |
| USE PLINT            | 3 |       |      |       |       |       |           |        |           |       | 125220 | 2019/04 |       |        |
| DENAND. IRNIGATION   |   | 0.    | 0    | 0.    | n.    | 67.   | 115.      | 115.   | 115.      |       |        |         |       | 440.   |
| DEMANC. DOWESTIC     |   | 0.    | 8:   | 0.    | 0.    | 0.    | 0.        |        |           |       |        |         | 0.    | 0.     |
| SP WAND . INDUSTRIAL |   | d.    | d .  | 0.    | a.    | đ.,   | 0.        | a.     | 0.        | 0.    | 0.     |         | 0.    | 0.     |
| ENAND . TUTAL        |   | 4.    | a.   | 0.    | 0.    | 69.   | 115.      | 115.   | 115.      | 41 .  |        | 9.      | 0.    |        |
| Low. UPStarsu        |   | 154.  | 142. | 219.  | 473.  | TTAL  | 2167.     | 815.   | 515.      | 60.1. | 175.   | 18%.    | 144.  | 9517.  |
| CUR. DUWASTHEAM      |   | 154.  | 192. | 219.  | 493.  | 3715. | 2052.     | 720.   | 400.      | \$57. | 185.   | 143.    | 165 . | 9017.  |
| DEFICIENCY (FISH)    |   | 0.    |      | 0.    | 0.    | 0     | 0.        | ۰.     | ۰.        | 0.    | 0.     | 2.      | 0.    | 0.     |
| arterner (rish)      |   | 206.  | 168. | 121.  | 0.    | 0.    | 0.        | n.     | ۰.        |       | 295.   | 178 .   | 175 - | 1140.  |
| PAND TUTALS FOR      |   |       |      |       |       |       |           |        |           |       |        |         |       |        |
| ILL THE USE PUINTSI  |   |       |      |       |       |       |           |        |           |       |        |         |       |        |
| FRAND, ISHIGATION    |   |       |      | 0.    | n.    | 154.  | 255.      | 255.   | 255.      | 102.  | 0.     |         |       | 1071.  |
| HAND. DIMESTIC       |   | 0.    | 0.   | 0.    | 11.   | U.    |           | 0.     |           |       | 0.     |         |       |        |
| DE WAND & ENDUSTREAL |   |       | 0.   | 0.    | 0.    | 0.    | 0.        | 0.     | ο.        | 0.    | 0.     | 9       | ۰.    | 2.     |
| DEWAND. DEFICIENCY   |   | :     | 0.   | 0.    | ۰.    | 154.  | 255.      | 285.   | 255.      | 107.  | 0.     | 0.      | ٥.    | 1071.  |
|                      |   |       |      | Q.,   | 0.    | 0.    | 0.        | 0.     | ۰.        | 0.    | 0.     |         | 0.    |        |

EQUESIS CR. DRY YEAR (1970)

Figure 9.6

10.0

Date of Print-out : Oct. 25, 1972

ŝ,

|                     |      | PAL  | FFR   | WAR                      | APR      | MAY     | JUNE  | JULY    | AUG   | SFPT   | nct   | NOY     | orc   | RAINCAL |      |
|---------------------|------|------|-------|--------------------------|----------|---------|-------|---------|-------|--------|-------|---------|-------|---------|------|
| THULL POINT         | 1    | 795. | 755.  | 755.                     | 755.     | 2154.   | 7156. | 1647.   | 1779. | 75*.   | 755.  | 755.    | 799.  |         |      |
| LOP POINT           | 5    | 244. | 351.  | 4 10 -                   | 964.     | 7094.   | 4744. | 1150.   | 551.  | 703.   | 331.  | 329.    | 124.  | 10761.  |      |
| ואפואן ישארוטואו    |      | 78.  |       |                          |          |         |       | 0.      | 01    | - 0.   | 149-  | 315     | 31+   | 298     |      |
| ISF PETNT           |      | 1.5  |       |                          |          | 141     | 24    | 257     |       | 201    | 1940  |         | 100   |         |      |
| FRAMI. ISATICATION  |      | 0.   | - :   | 0.                       | 0.       | *0:     |       | · · · · | - 65. | 26.    | :     | 8:      | - :   | 264.    |      |
| FRAME. DOW STIC     |      | ÷.   | 0.    | 0.                       | · · ·    | 0.      | . O.  | 0.      | 0.    | 0.     | 0.    |         |       | 0.      |      |
| PERAND. IN JUSTRIAL |      | 0.   | 0.    |                          | 0.       | 40.     |       | 66.     | 66.   | 76.    | 0.    | 0.      | 0.    | 264 .   |      |
| De. UPSTATAN        |      | 66.  |       | 105.                     | 779.     | 547.    | 984.  | 691.    | 513.  | 551.   | 77.   | 77.     | 77.   | 4021.   |      |
| Ind. nowstropan     |      |      | 82.   | 105.                     | 224.     | 507.    |       | 627.    |       | - 575. | 77.   | 771     |       | 37571   | -    |
| FRAND. DEFICIENCY   |      | 0.   | 0.    | 0.                       | P .      | Ø.,     | 0.    | 0.      | 9.    | o .    | 0.    | ۰.      | 0.    |         |      |
| EFICIFACY           |      |      | 0.    | 0.                       | 0.       | 0.      | 0.    | 0.      | 0.    |        | 0.    | ۰.      |       |         |      |
| ISE POINT           | - AL |      | 2211  |                          |          |         |       |         |       |        |       |         | -     |         |      |
| MAND, ISAIGATION    | e .  |      | - 0.  | 0.                       |          | 45.     | 74.   | 74.     | 74.   | 30.    |       |         |       | 297.    |      |
| WAND. DOWESTIC      |      | 0.   | 0.    | Q .                      | 0.       | 0.      | 0.    | 0.      | 0.    | 0.     | 0.    | 0.      | 0.    |         |      |
| DEMANT, INCRESTREAL |      | 0.   | 0.    | 0.                       | 0.       | ٥.      | 0.    | n.      | 0.    | 0.     |       | 0.      | 0.    | 0.      |      |
| THALF. TOTAL        | -    |      |       |                          |          | 43.     |       |         | 741   | 30.    | .0.   |         |       | 247.    |      |
| Lite. UPSTOLAN      |      | 210. | 272 . | 313.                     | 714.     | 5490.   | 3607. | 1122.   | 669.  | 707.   | \$50. | 257.    | 257.  | 13903.  |      |
| LUN. DOWNSTOF AN    |      | 210. | 272.  | 331.                     | 714.     | 344 9.  | 3533. | 104.4.  | \$95. | 677.   | 259.  | 257.    | 257.  | 13605.  |      |
| THAND. DEFICIENCY   |      |      | 0.    | ñ.                       | 0.       | 0.      | ĝ.    | 0.      | 0.    | 0.     | 9.    | 0.      | 0.    | 0.      | 1.12 |
| DEFICIENCY (FISH)   |      | 144- | 88.   | 27-                      | • • •    | 0.      |       | • • •   | ۰.    | 0.     | 221 . | . 103 - | 103-  | 686.    |      |
| ST POINT            |      |      | 3     |                          |          |         |       | 10000   |       | A      |       |         |       |         |      |
| CHANC. IFRIGATION   | ~    | 0.   | 0.    | 9.                       | 0.       | 69.     | 115.  | 115.    | 115.  |        | 0.    | 0.      |       | 480.    |      |
| EWILD, DEW STIE     | -    |      |       |                          | 0.       |         |       | 0.      | 0.    | · ·    | 9.    | 0.      | 0.    | 0.      |      |
| THAND, INDUSTRIAL   |      | 0.   | ٥.    | a.                       | ø.       |         | 0.    | 0.      | 0.    | 0.     | 0.    | ۰.      | o.    | 0.      |      |
| FMANT . TOTAL       |      | 0.   |       | n.,                      | 0.       | 69.     | 115-  | 115.    | 114.  |        | 0.    | ••      | 0.    | 467.    |      |
| LON. LOSTOFAN       | _    | 175. | 340.  | 171.                     | \$23.    | 5787.   | 4280. | 1740.   | 650.  | 741.   | 373.  | 321.    | 321 . | 16775.  | -    |
| 1.DE. TOANSTOFIC    |      | 275. | 340.  |                          | 021.     | B714.   |       | 1125.   | 0.    | 843.   | 323.  | N21.    | 121.  |         |      |
| FWAND, DEFICIENCY   |      | 0.   | 20-   | °.                       | o.<br>o. | 0.      | 0.    | 0.      | 0.    | ő.     |       | 39.     | 39.   | 340.    |      |
| IFICIENCY (FISH)    |      | 85.  | 20.   |                          |          |         |       |         |       | ••     | 157.  |         |       | 340.    |      |
| RAND TOTALS POD     |      |      |       | <ul> <li>2.41</li> </ul> | 12.2     | 437 8 8 |       |         | -     |        | 8196  |         | 11 A  |         |      |
| UL THE UST POINTS:  |      |      |       |                          |          |         |       |         |       |        |       |         | 1.5   |         |      |
| HAND. INSIGATION    |      | 0.   | 0.    | 0.                       | 0.       | 154.    | 255.  | 255.    | 259.  | 102.   | 0.    |         | ÷.    | 1021.   |      |
| 1 445 14 9C 47 3115 | _    | 0.   | 0.    | 0.                       | 0.       | 0.      | e.    | 0.      | 0.    | 0.     | 0.    | 0.      |       |         | _    |
| 144. 1. TAN. STOTAT |      |      |       | 9.                       |          |         |       | Q.      |       | 17 a   |       |         |       | 1021.   |      |
| FRAND, FOTAL        |      | 0.   | 0.    | 0.                       | 0.       | 154.    | 255.  | 255.    | 255 . | 102.   | 0.    | •.      | 0.    |         |      |

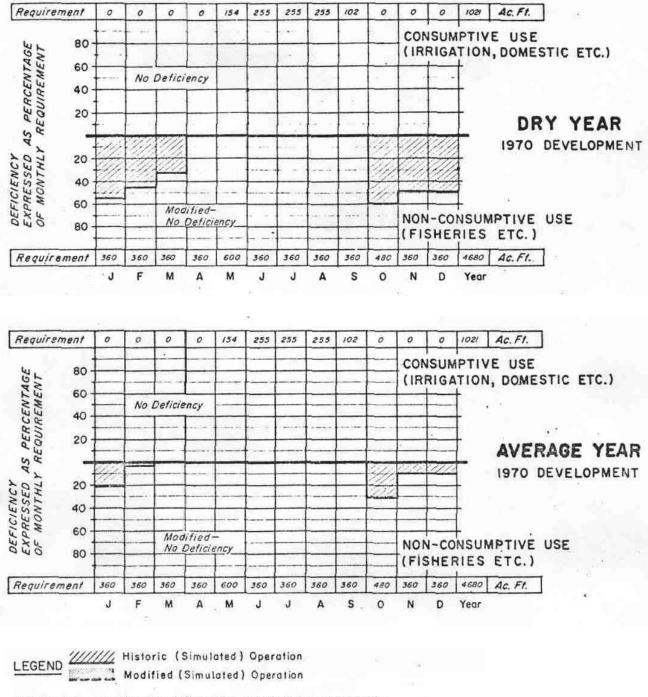

EOUESIS CR. AVERAGE YEAR (1970)

Figure 9.7

÷

|                                                                                                                                                                                   |   | JAN                   | FEB                              | -                                | APQ                        | PAY                                   | JUNF                                            | JULY                                       | AUG                        | SEPT   | 109                                  | NOV                                   | DEC                                     | APPHUAL                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------|----------------------------------|----------------------------------|----------------------------|---------------------------------------|-------------------------------------------------|--------------------------------------------|----------------------------|--------|--------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------|
| CONTORS PRENT                                                                                                                                                                     | 1 | 755.                  | 755.                             | 755.                             | 75%.                       | 2156.                                 | 7154.                                           | 1642.                                      | 1279.                      | 745.   | 755.                                 | 755.                                  | 755.                                    |                                          |
| HATLAING PRINT                                                                                                                                                                    | 5 | 571.                  | 702.                             | 840.                             | 2050.                      | 14801.                                | 8096.<br>0.                                     | 2150.                                      | 876.                       | 1012.  |                                      | 674.<br>0.                            | 634.                                    | -550FE                                   |
| IST OF INT                                                                                                                                                                        |   |                       |                                  |                                  |                            |                                       |                                                 |                                            |                            |        |                                      |                                       |                                         |                                          |
| AFMAATA THOTGATTEN<br>HAAND, ENGUSTELAL<br>OFMAND, ENGUSTELAL<br>OFMAND, THTAL<br>ITAL UPSTREAM<br>HERW, DEWNSTREAM<br>NEWAND, DEFICIENCY<br>DEFICIENCY                           |   | 128.                  | 155.                             | 197.                             | 447700                     | 2210.                                 | 66.<br>1739.<br>0.                              | 60000000000000000000000000000000000000     | 64.<br>64.<br>517.<br>0.   |        | 14500                                | 145.00                                | 145.                                    | 244                                      |
| USE DEINE<br>DEMAND. 189 IGATION<br>DEMAND. INDUSTIC<br>DEMAND. INDUSTRIAL<br>DEMAND. TOTAL<br>FLOW. UPSTHEAN<br>ICON. DUWNSTHEAN                                                 | 2 | 0.<br>0.<br>0.<br>15. | 0<br>0.<br>571.<br>571.          | 0.<br>0.<br>0.<br>0.<br>0.<br>0. | 0.<br>0.<br>0.<br>0.<br>0. | 45.<br>0.<br>45.<br>11234.            | 74.<br>0.<br>74.<br>6442.                       | 74.<br>                                    | 74.                        | 10.    | 0                                    | 000077                                | 000000000000000000000000000000000000000 | 207.<br>0.<br>207.<br>25855.             |
| DEFICIENCY (FISH)                                                                                                                                                                 |   | 0:                    | 8:                               | 0.                               | 0.                         | 0.                                    | ő.                                              | 0:                                         | 0.                         | 0.     | 0.                                   | 0.                                    | ÷.                                      | 0.                                       |
| USE DEINT<br>DFMAND. DOMESTIC<br>DIMANCS DOMESTIC<br>DIMANCS INDUSTRIAL<br>DIMANGS TOTAL<br>IL 44400 TOTAL<br>IL 44400 TOTAL<br>TLOW, DISTING<br>DIMAND. OFFICITICY<br>OFFICITICS | 1 | . 0.<br>5.0.<br>5.0.  | 0.<br>0.<br>0.<br>0.<br>0.<br>0. | 81000                            | 18900.                     | 60.<br>0.<br>0.<br>14211.<br>0.<br>0. | 115.<br>0.<br>115.<br>794.<br>7429.<br>0.<br>0. | 115.<br>0.<br>115.<br>2147.<br>2012.<br>0. | 115.<br>115.<br>449.<br>0. | 100000 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                       | ******                                  | 0.<br>0.<br>12127-<br>11552-<br>0.<br>0. |
| GRAND TOTALS FOR<br>ALL THE USF POINTS:<br>DFMAND, TERIGATICM<br>DFMAND, TERIGATIC<br>NEMAND, TOTAL<br>DFMAND, TOTAL<br>DFMAND, DEFICIENCY                                        |   | 0.<br>0.<br>0.        | *****                            |                                  | o.<br>                     | 154.<br>0.<br>154.                    | ·<br>·<br>·<br>·<br>·                           | 255.                                       | 255.                       | 102.   | 00000                                | · · · · · · · · · · · · · · · · · · · |                                         | 1071.                                    |

EQUESIS CR. WET YEAR (1970)



NOTES: 1. Consumptive Use deficiencies are totals for whole basin.

2. Non-Consumptive deficiencies are those extant at creek mouth.

3. In a Wet Year, a fisheries deficiency of O ac. ft. exists at mouth.

EQUESIS CR. (1970) DEFICIENCY DIAGRAM

year, Fisheries shortages of up to 30% are noted in winter. It is understood that this apparent shortage does not exist in practice since the gate on the Pinaus Lake Dam is left partially open in winter to prevent fish kill.

In conclusion, the contribution which Equesis Creek makes to the total tributary inflow to Okanagan Lake may be evaluated for various types of year as shown on Table 9.8.

|                    | Regulated<br>1970 Dev                               |                                                                      |                                                                             |  |
|--------------------|-----------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Type<br>of<br>Year | Inflow to<br>Okanagan Lake<br>from<br>Equesis Creek | Total Tributary<br>Inflow to<br>Okanagan Lake<br>from All<br>Sources | Percentage<br>Contribution<br>by Equesis Cree<br>to Okanagan<br>Lake Inflow |  |
|                    | acre feet                                           | acre feet                                                            | x                                                                           |  |
| Dry                | 9,200                                               | 279,200                                                              | 3.3                                                                         |  |
| Average            | 16,800                                              | 516,000                                                              | 3.3                                                                         |  |
| Wet                | 33,000                                              | 796,700                                                              | 4.1                                                                         |  |

TABLE 9.8 COMPARISON BETWEEN INFLOW TO EQUESIS CREEK AND OKANAGAN LAKE