Acknowledgements

The major contributions of material by Gordon D. Koshinsky and T.J. Willcocks, Environment Canada, is most gratefully acknowledged. Mr. Koshinsky's continued interest and assistance is also acknowledged.

The generous assistance and advice of G. Halsey, R.C. Thomas, G.D. Taylor, S.J. MacDonald, and A. Tautz of the B.C. Fish and Wildlife Branch, and particularly the help and encouragement of E.H. Vernon is noted with thanks.

J. O'Riordan, Environment Canada was of great assistance and provided considerable stimulus throughout the final phases. A.M. Thomson, Study Director was freely helpful and a pleasure to work with.

T.A.J. Leach and K. Smythe, B.C. Water Investigations Branch, provided much data with regard to tributary and main river flows, on which many aspects of the fisheries analysis are based. These contributions are acknowledged. J.G. Stockner, T.G. Northcote, F. Boyd and R. Hinton contributed information and advice. Frank Metcalf assisted in familiarization with the system.

The helpfulness, friendliness and technical expertise of the Okanagan Basin Study Office personnel is a pleasure to acknowledge.

REFERENCES

PERSONAL COMMUNICATIONS CITED

- Allen. R.L. Biologist, Washington State Department of Fisheries, Wenatchee, Washington
- Andrew, F.J. Chief Engineer, International Pacific Salmon Fisheries Commission, New Westminster, B.C.
- Andrusak, H. Regional Biologist, Fish and Wildlife Branch, B.C. Department Recreation and Conservation, Nelson, B.C.
- Botham, J. Engineering Technician, Water Rights Branch, B.C. Department Lands, Forests and Water Resources, Kelowna, B.C.
- Gjerness, T. Biologist, International Pacific Salmon Fisheries Commission, Cultus Lake, B.C.
- Halsey, T.G. Head, Research and Technical Services Section, Fish and Wildlife Branch, B.C. Department of Recreation and Conservation, Vancouver, B.C.
- Leach, T.A.J. Engineer, B.C. Water Investigations Branch, B.C. Department of Lands, Forests and Water Resources, Victoria, B.C.
- MacDonald, S.J. Regional Biologist, Fish and Wildlife Branch, B.C. Department of Recreation and Conservation, Penticton, B.C.
- St. John, Dr. B. Research Scientist, Inland Waters Director, Pacific Environment Institute, Canada Department of Environment, West Vancouver, B.C.
- Taylor, G.D. Head, Habitat Improvement Section, Fish and Wildlife Branch, B.C. Department of Recreation and Conservation, Victoria, B.C.
- Vernon, E.H. Chief, Fisheries Management, Fish and Wildlife Branch, B.C. Department of Recreation and Conservation, Victoria, B.C.

Manuscript reports resulting from Canada-British Columbia Okanagan Basin Agreement Studies which have been used extensively in the compilation of Technical Supplement IX, Part A

- 1. Bjonback, R.D. Economic Growth Projections to 2020 in the Okanagan
- 2. Fisheries Service, Environment Canada, 1971. Task 23/24(g) Preliminary Evaluation: Salmon 17 pp
- 3. Fisheries Service, Environment Canada, 1972. Task 162 Pacific Salmon: Population and Habitat Requirements 44 pp.
- Halsey, T.G. and B.N. Lea, 1972. The Shore Spawning Habitat of Kokanee in Okanagan Lake, and the Effect of Lake Level Changes on Reproductive Success. 25 pp
- 5. Hinton, B.R., 1972. Task 163. Salmonid Enhancement Feasibility Study. Volume I Trout Creek 42 pp Volume II Mission Creek 42 pp Volume III Okanagan River Sockeye Salmon 31 pp
- 6. Koshinsky, G.D. 1971. Task 66. Abstract of Fish Habitat Survey, Okanagan Tributary Streams 19 pp
- 7. Koshinsky, G.D. 1971. Task 66. Trout Creek Pilot Study: Preliminary Evaluation 51 pp.
- 8. Koshinsky, G.D. 1972. Task 66C₁. Creel Census of Okanagan Headwater Lakes and Streams, 1971-72.
- 9. Koshinsky, G.D. 1972. Task 66C₂ Creel Census of Okanagan Mainstem Lakes and Okanagan River, 1971-72. 49 pp.
- 10.Koshinsky, G.D. and T.J. Willcocks, 1973. Task 66D. Fishery Potentials in the Okanagan Basin. 198 pp.
- 11.Koshinsky, G.D. and J.E. Andres, 1972. Task 66B. The Limnology-Fisheries of Headwater Lakes in the Okanagan Basin. 144 pp.
- 12.MacDonald, S.J. and L.N. Molnar, 1971. Task 115. Description of Stream Spawning Populations of Kokanee in Streams Tributary to Okanagan Basin Mainstem Lakes 33 pp.
- 13.Northcote, T.G., T.G. Halsey and S.J. MacDonald, 1972. Task 115. Fish as Indicators of Water Quality in the Okanagan Basin Lakes 78 pp.
- 14.0'Riordan, J., Task 151. The Value of Sport Fishing in the Okanagan Basin.
- 15.Smyth, K. 1974. Task 35 and 36. Final Task Report on Comparison of Runoff with Water Requirements in Selected Tributaries to Okanagan Lake: Part I and Part II. 34 pp. excluding figures and tables.
- 16.Stockner, J.G., 1972. Task 118: General Limnology of the Okanagan Mainstem Lakes.

LITERATURE CITED

- Allen, K.R. 1951. The Horokiwi Stream: A Study of a trout population. Fish. Bull. N.Z. 10:1-238.
- Bjorn, T.C. MS 1966. Salmon and Steelhead Investigation. Idaho Fish Game Dept. Dingell-Johnson MS Rep. Proj. F-49-R-4: (Job 3) : 183 p
- Chapman, D.M. 1965. Net production of juvenile coho salmon in three Oregin streams. Trans. Amer. Fish Soc. 94: 40-52.
- Chapman, D.W. 1967. Production in fish populations. <u>In</u> Gerking, S.D. (ed.). The biological basis of freshwater fish production. Oxford: Blackwell, 3-29.
- Coble, D.M. 1961. Influence of water exchange and dissolved oxygen in redds on survival of steelhead trout embryos. Trans. Amer. Fish Soc. 90: 469-474.
- Eipper, A.M. 1960. Managing farm ponds for trout production. N.Y. State College of Agric., Cornell Extension Bull. 1036: 31 p.
- Elser, A. MS 1972. A partial evaluation and application of the "Montana Method" of determining streamflow requirements. Montana Fish and Game Dept., Miles City, Montana. MS Rep. 6 p.
- Galbraith, D.M. and G.D. Taylor, MS 1970. Fish habitat survey, Okanagan Tributary Streams, 1969. Vol. 1-3. Fish Manage. Rep. Fish and Wildlife Br., B.C. Dep. Recreation and Conservation, Victoria, 242 pp.
- Halsey, T.G. MS 1972. Estimates of the carrying capacity of Okanagan Lake for rainbow trout and kokanee. B.C. Dept. Recreation and Conservation, MS Rep. 10 p,
- Hartman, W.L. 1959. Biology and vital statistics of rainbow trout in the Finger Lakes Region, New York. N.Y. Fish Game J. 6: 121-178.
- Hunt, R.L. 1966. Production and angler harvest of wild brook trout in Lawrence Creek, Wisconsin. Misc. Cons. Dep. Tech. Bull. 35: 51 p.
- International Pacific Salmon Fisheries Commission MS 1970. Proposed artificial spawning channel for Nadina River Sockeye salmon. I.P.S.F.C., New Westminster, B.C. MS Rep. 51 p.
- Kraft, M.E. 1972. Effects of controlled flow reduction on a trout stream. J. Fish. Res. Bd. Canada 29: 1405-1411.
- Le Cren, E.D. 1969. Estimates of fish populations and production in small streams in England. <u>In</u> Northcote, T.G. (ed.). Symposium on salmon and trout in streams, pp 269-280.
- Major, R.L., and D.R. Craddock. 1962. Influence of early maturing females on reproductive potential of Columbia River blueback salmon (*Oncorhynchus nerka*) U.S. Fish Wildl. Serv. Fishery Bull. 61 (194): 427-437.
- Needham, P.R. 1969. Trout Streams. 2nd ed. Holdan-Day. San Francisco. 241 p.
- Needham, P.R., J.W. Moffett and D.W. Slater. 1945. Fluctuations in wild brown trout populations in Convict Creek, California. J. Wildl. Manage. 9: 9-25.

- Nielson, R.S., N. Reimers, and H.D. Kennedy. 1957. A sixyear study of the survival and vitality of hatcheryreared trout of catchable size in Convict Creek, California, California Fish and Game 43: 5-42.
- Northcote, T.G., T.G. Halsey, and S.J. MacDonald. MS 1972. Fish as indicators of water quality in the Okanagan Basin Lakes, British Columbia. B.C. Dept. Recreation and Conservation. MS Rep. 78 p.
- Pearse Bowden Economic Consultants Limited. 1971. The value of freshwater sport fishing in British Columbia: Report prepared for B.C. Fish and Wildlife Branch. Queens Printer, Victoria, B.C. 64 pp.
- Pinsent, M.C., and John G. Stockner, The limnology of the Okanagan main valley lakes. Canada-British Columbia Okanagan Basin Agreement. Technical Supplement V.
- Ricker, M.E. 1938. "Residual" and kokanee salmon in Cultus Lake. J. Fish. Res. Bd. Canada 4: 192-218.
- Ryder, R.A. 1965. A method for estimating the potential fish production of north-temperate lakes. Trans. Am. Fish. Soc. 94: 214-218.
- Schlick, R.O. MS 1972. A fisheries survey of Naosap Lake, 1970. Research and Dev. Br., Manitoba Dep. Mines, Res., Env. Manage. MS Rep. No. 71-3. 22 p.
- Shetter, D.S. 1944. Anglers' catches from portions of certain Michigan trout streams in 1939 and 1940, with discussion of indices to angling quality. Pap. Mich. Acad. Sci., Arts, Lett. 29: 305-312.
- Smith, S.B., T.G. Halsey, Stringer, and R.A.H. Sparrow. MS 1969. The development and initial testing of a rainbow trout stocking formula in British Columbia lakes. B.C. Dep. Recreation and Conservation. Fish. Manage. Rep. 60: 18 p.
- Surber, E.W. 1937. Rainbow trout and bottom fauna production in one mile of stream. Trans. Amer. Fish. Soc. 66: 193-202.
- Vernon, E.H. 1957. Morphometric comparison of three races of kokanee (Oncorhynchus nerka) within a large British Columbia lake. J. Fish. Res. Bd. Canada 14: 578-598.

APPENDICES

APPENDIX A1

ELEVATIONS AND SURFACE AREAS AT FULL SUPPLY LEVEL OF 75 "ADDITIONAL" (NON-KEY) OKANAGAN HEADWATER LAKES KNOWN TO HARBOR SPORT-FISHING OPPORTUNITIES LISTING TO ACCOMPANY FIGURE 3.1

NO.	LAKE	ELEVATION, FEET	SURFACE AREA, ACRES	N0. ^b	LAKE	ELEVATION, FEET	SURFACE AREA, ACRES
1	Aeneas	2,400	38	39	Lacoma	3,500	13
2	Baker	4,500	25	40	Lebanon	4,000	3
3	Big Clarke	5,300	13	41	Little Clarke	5,100	11
4	Big Meadow	5,400	56	42	Little Bouleau	4,600	40
5	Blue	2,750	5	43	Loch Drinkie	4,600	45
6	Brent	2,700	58	44	Loch Katrine	6,400	30
7	Bulman	4,400	62	45	Long Meadow	4,300	60
8	Canyon	5,500	40	46	Lower Twin	2,700	82
9	Chapman	5,600	25	47	MacDonald	5,600	12
10	Christie	4,400	7	48	McLean Clan	5,300	25
11	Clarke Meadows	5,000	19	49	Marron	2,000	35
12	Corporation	5,700	12	50	Meadow	4,500	12
13	Crescent	4,500	80	51	Minnow	4,200	35
14	Culper	5,700	8	52	Mission	6,000	133
15	Derenzy	5,300	18	53	Morrison	4,500	5
16	Divide	5,000	14	54	Naramata	4,150	35
17	Dobbin	4,800	20	55	Norman	4,600	3
18	Duo Via	4,400	10	56	Nuttal	5,700	13
19	Eastmere	4,700	30	57	Otter	1,150	120
20	Elinor	4,100	20	58	Paynter	4,500	57
21	Ellis Res. 1	5,050	45	59	Pear	4,200	35
22	Ellis Res. 4	4,400	100	60	Rankin	4,800	10
23	Ellison	1,400	520	61	Ratnip	4,100	5
24	Farleigh	2,500	35	62	Reed	6,000	8
25	Fish	4,300	35	63	Rod	4,600	10
26	Gallagher	1,400	17	64	Round	4,500	30
27	Gemmill	4,700	8	65	Round	1,400	80
28	Glenmore Res.	1,200	18	66	Seaton	4,550	30
29	Goose	1,600	89	67	Shannon	1,700	54
30	Graystoke	6,000	89	68	Shorts	4,600	20
31	Green	1,600	44	69	Tadpole	5,300	17
32	Greyback	5,200	307	70	Thirsk Res.	3,400	148
33	Guest	4,400	28	71	Tuqulnuit	1,100	125
34	Hudson Bay	5,200	15	72	Upper Twin	2,700	79
35	Isintok	5,400	97	73	West	4,900	10
36	Islaht	4,800	67	74	Wilson	4,300	12
37	Kathleen	4,500	5	75	Wolf	2,250	3
38	Kilpoola	2,750	42			_,	č

APPENDIX A2

ELEVATION. TOTAL DISSOLVED SOLIDS. AND SURFACE AREAS OF 57 "KEY" HEADWATER LAKES

LEVATION TOTAL DIS- SOLVED SOLUES AREA (ACRES) AT FULL SUPPLY OF LIVE STORAGE VOLUED AREA (ACRES) TOTAL LIMMETIC AT SOL DRAMOWN AT FULL SUPPLY OF LIVE STORAGE VOLUED Agur Alise data Bardolf 3800 232 9 7.5 0.9 6.6 Bardolf 3200 240 21 42.0 14.0 13.0 Bear 4400 50* 20 20.0 0.0 20.0 16.6 Browne 4300 50* 20 20.0 0.0 20.0 16.0 13.0 Becker 4000 120* 25 25.0 8.0 17.0 50.9* 20.0* 50.9* 20.0* 50.9* 20.0* 21.0* 15.0* 20.0* 20.0* 20.0* 20.0* 21.0* 15.0* 20.0* 21.0* 21.0* 20.0* 21.0* 21.0* 20.0* 22.5 45.0 50.0 51.2* 50.0 50.0 51.2* 50.0 50.0 51.2* 50.0 50.0 12.5* 50.0 50.0 12.0* 50.0*				ATER LAKES			
ELE VATION TOTAL DIS- FEET AT FULL SUPPLY OF LIVE STORGE VOLUME 0 LEVEL OF LIVE STORGE VOLUME 0 LEVEL Agur 3800 53 21 20.0 5.3 14.7 Allex 4800 53 21 20.0 5.3 14.7 Allendale 5000 240 49 42.1 12.5 25.0 8.0 17.0 Bear 4400 50* 20 20.0 5.3 14.7 Bouleau 4600 120* 25 25.0 8.0 17.0 Bouleau 4600 105* 485 158.0 2.0* 156.0* Bouneau 4600 105* 485 406.5 94.0 132.5 Deer (Tsuh) 4700 82* 28 28.0 0.0* 3.0* Echoa 4800 70* 35 35.0 0.0 43.0 Gere (Tsuh) 4700 82* 28.0 0.0 14.0 36.0* Echoa 4800				ADEA (ACDES)	AREA (AG	CRES) AT 50%	DRAWDOWN
FEET SOLVED LEVEL TOTAL LITMRETIC LITTORAL Agur 4800 53 21 20.0 5.3 14.7 Allendale 5000 240 49 42.1 12.5 29.6 Baar 4400 50* 20 20.0 0.0 20.0 Becker 4000 72* 25 25.0 8.0 17.0 Browne 4300 80* 61 50.9 20.0* 156.9* Browne 4300 80* 61 50.9 20.0* 25.0* 21.0* Darke 3000 69* 72 63.5 94.0 31.2.5 Deer 1600 85* 10 10.0* 7.0* 31.0* Deer (fsuh) 4700 82* 49 30.0 10.0* 35.0* Ereas 4800 70* 35 35.0 0.0* 35.0* Genne 5400 60* 40 40.0		FLEVATION	TOTAL DIS-				
Ayur38002297.50.96.6Alsendale6000632120.012.514.013.0Bardolf200100*2727.014.013.0Becker4000120*2525.08.017.0Bouleau460058158158.02.0*50.9Browne430080*6150.90.0*50.9*Chute3800697067.522.545.0Dee Chain400105485406.594.0312.5Dee Chain40082*2828.00.028.0*Deer (Tsuh)160085*1010.0*7.03.0*Eceoron400069*4010.0*7.035.0*Deer (Tsuh)470082*2828.00.028.0*Eceoron400072*4935.0*0.0*35.0*Garnet Valley210060*4040.05.0*35.0*Garnet Valley210060*4040.05.0*35.0*Hearen540060*2525.018.03.0*15.0*Haynes420071*136122.080.014.024.0*Haynes420071*136122.080.014.026.0*Haynes420050*3030.024.0*50.014.016.0*Haynes4200 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>I TMNETIC</td><td></td></t<>						I TMNETIC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					20.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Bouleau 4600 58 158 158 158.0 2.0* 156.0* Browne 4300 210* 41 41.0 20.0* 21.0* Gunde 3800 160* 72 53.0 0.0* 21.0* Darke 3000 160* 72 53.0 0.0 53.0 Deec fisin 4400 105 485 406.5 94.0 312.5 Deer 1600 85 10 10.0* 7.0* 3.0* Deer (rsuh) 4700 82* 28 0.0 0.0 28.0 Echo d 4800 70* 35 35.0 0.0* 35.0* Eneas 4700 82* 49 30.0 10.0 20.0* 35.0* Gennet 5400 60* 40 40.0 5.0* 35.0* Haynes 4200 7* 136 122.0 80.0 42.0 Haynes 3600 82* 54							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Burnel12400210*4141.41.020.0*21.0*Chute3800697067.522.545.0Darke3000160*7253.00.053.0Dee Chain ^C 4400105485406.594.0312.5Deep1600851010.0*7.0*33.0*Deer (Tsub)470082*2828.00.028.0Etnasd470082*4930.010.020.0*Etnasd470055*5050.014.036.0*Etnasd470055*5050.014.036.0Fish Hawk6000484343.00.043.0Geen380082*2918.03.0*15.0*Haynes420071*136122.080.042.0#aynes420088*5438.90.0138.9#aynes420088*5438.90.038.9#a430088*5435.00.0138.5Hearon520060*25.07.518.5Hearon520060*25.07.024.0*6.0*High450050*30.0020.035.59.0Jaron520060*1400.07.518.5Hearon420050*42.07.518.518.5Jaron5200							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							21.0*
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Dee Chain ^C 4400 105 485 100 10.0* 312.5 Deep 1600 85 10 10.0* 7.0* 3.0* Deer (Tsuh) 4700 82* 28 28.0 0.0 28.0 Echo 4800 70* 35 35.0 0.0* 35.0* Esperon 5400 55* 50 0.0 14.0 36.0* Garnet Valley 2100 160* 87 56.0 17.0 39.0 Geen 5400 60* 40 40.0 5.0* 35.0* Glanet Valley 2100 88* 161 135.0 15.0* 15.0* Geen 3800 88* 54 38.9 0.0 38.9 #2 4300 88* 54 35.9 0.0 38.9 #3 4300 88* 52 26.0 7.5 18.5 Hereron 5200 60* 255.0 15.0* 10	Darke			72			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dee Chain ^C		105	485	406.5	94.0	312.5
Echo480070*3535.00.0*35.0*Enead4700 $82*$ 4930.010.020.0*Esperon540055*5050.014.036.0Fish Hawk6000484343.00.043.0Garnet Valley540060*4040.05.0*35.0*Geen540060*4040.05.0*35.0*Glen540060*4040.05.0*35.0*Haynes420071*136122.080.042.0#2430088*5438.90.038.9#3430088*5226.07.518.5#4430088*5225.015.0*10.0*Hydraulic40050*420255.07.0248.0Hydraulic400050*3030.024.0*6.0*Hydraulic430050*8264.335.329.0Ideal440050*8264.335.329.0Jackpine430050*8264.335.329.0Ideal440050*8264.335.329.0Lady King33001901515.00.0*15.0*Ideal440050*8264.335.329.0Lady King330090*1515.00.0*15.0*Madeen260055*<	Deep			10	10.0*		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							28.0
Esperon 540 55* 50 50.0 14.0 36.0 Garnet Valley 2100 160* 87 56.0 17.0 39.0 Geen 5400 60* 40 40.0 5.0* 35.0* Hagnes 4200 71* 136 122.0 80.0 42.0 Headwaters #1 4200 88* 54 35.9 0.0 38.9 #2 4300 88* 54 35.9 0.0 38.9 #4 4300 88* 52 25.0 15.0* 10.0* Hereron 5200 60* 25 25.0 15.0* 10.0* High 4500 50* 30 30.0 24.0* 6.0* Hydraulic 4000 50* 420 255.0 7.0 24.0* James 4500 60* 106 0.0 108.0 10.0 10.0 12.0* James 4500 50* 82 <td>Echo d</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Echo d						
Fish Hawk 6000 48 43 43.0 0.0 43.0 Garnet Valley 2100 $160*$ 87 56.0 17.0 39.0 Geen 3800 $82*$ 29 18.0 $3.0*$ $35.0*$ Glen 3800 $82*$ 29 18.0 $3.0*$ $15.0*$ Haynes 4200 $71*$ 136 122.0 80.0 42.0 Headwaters #1 4200 $88*$ 54 38.9 0.0 38.9 #3 4300 $88*$ 54 38.9 0.0 38.9 #4 4300 $88*$ 54 35.9 0.0 35.9 #a 4300 $88*$ 52 26.0 7.5 18.5 Hereron 5200 $60*$ 25 25.0 $15.0*$ $10.0*$ High 4500 $50*$ 30 30.0 $24.0*$ $6.0*$ High 4500 $50*$ 420 255.0 7.0 248.0 James 4500 $60*$ 140 108.0 0.0 108.0 James 4500 $50*$ 82 64.3 35.3 29.0 King Edward 4500 $50*$ 82 64.3 35.3 29.0 Lady King 3300 190 15 15.0 $0.0*$ $15.0*$ Lady King 3300 190 15 15.0 $0.0*$ $15.0*$ Lady King 3300 $240*$ 25 25.0 $0.0*$ 25.0 Ving Edward<	Eneas		82*				20.0*
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Geen 5400 60^* 40 40.0 5.0^* 35.0^* Haynes 4200 71^* 136 122.0 80.0 42.0 Headwaters #1 4200 88 161 135.0 0.0 135.0 #2 4300 88^* 54 38.9 0.0 38.9 #3 4300 88^* 54 35.9 0.0 35.9 #4 4300 88^* 54 35.9 0.0 35.9 #4 4300 88^* 52 26.0 7.5 18.5 Hereron 5200 60^* 25 25.0 15.0^* 10.0^* Hydraulic 4000 71^* 644 316.0 0.0 316.0 Ideal 4400 50^* 420 255.0 7.0 $24.8.0$ Jackpine 4300 90 106 75.4 0.0 75.4 James 4500 50^* 82 64.3 35.3 29.0 Lady King 3300 190 15 15.0 0.0^* 15.0^* Lady King 3300 103 182 126.0 0.0^* 126.0^* Lost 4500 55^* 45.0 18.0^* 27.0^* McCall 3330 90^* 15 15.0^* 0.0^* 25.0^* Lost 4500 55^* 45.0 18.0^* 27.0^* McCall 3300 90^* 15 15.0^* 24.0^* Lady Ling 3300 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						1/.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						5.0*	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
#2430088*5438.90.038.9#3430088*5435.90.035.9#4430088*5226.07.518.5Hereron5200 60^* 2525.015.0*10.0*High450050*3030.024.0*6.0*Hydraulic400071644316.00.0316.0Jackpine43009010675.40.075.4James450050*420255.07.0248.0Jackpine43009010675.40.075.4James450050*8264.335.329.0Lady King33001001515.00.0*15.0*Lambly3800103182126.00.0126.0Lost450055*4545.018.0*27.0*Lost450055*4545.018.0*27.0*Lost450054*2525.00.0*15.0*Ladden28002151717.06.011.0Madden28002005463055.024.0Lost450054*35.027.63.624.0Deachland410090*1515.00.0*15.0*Madden2800200120*7050.0248.0Deachland410090*25.							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							38.9
#4430088*5226.07.518.5Hereron5200 $60*$ 2525.0 $15.0*$ $10.0*$ High450050*3030.024.0* $6.0*$ Hydraulic400071 644 316.0 0.0 316.0 Jackpine430090 106 75.4 0.0 75.4 Jackpine4300 90 106 75.4 0.0 75.4 James4500 $60*$ 140 108.0 $0.0*$ $6.0*$ Kaiser Bill4500 $50*$ 82 64.3 35.3 29.0 Lady King 3300 190 15 15.0° 0.0° 126.0° Lady King 3300 190 15 15.0° 0.0° 25.0° Lone Pine 5500 240° 25 25.0° 0.0° 25.0° Lost 4500 55° 45 45.0 18.0° 27.0° Madden 2800 215 17 17.0° 0.0° 15.0° Madden 2800 215 17 17.0° 0.0° 17.0° Peachland 4100 90° 226° 162.0 100.0° 62.0 Pinaus 3300 122° 17° 399.0 347.0 52.0 Pinaus 3300 122° 70° 35.0° 25.0° 29.0 Pinaus 3300 120° 70° </td <td></td> <td></td> <td></td> <td></td> <td>35.9</td> <td></td> <td>35.9</td>					35.9		35.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							18.5
Hydraulic400071644316.00.0316.0Ideal440050*420255.07.0248.0Jackpine43009010675.40.075.4James450060*140108.00.0108.0Kaiser Bill45005066.00.0*6.0*King Edward450050*8264.335.329.0Lady King33001901515.00.0*15.0*Lambly3800103182126.00.0126.0*Lost450055*4545.018.0*27.0*Lost450055*4545.018.0*27.0*McCall330090*1517.00.0*15.0*Madden28002151717.06.011.0Munro5200823527.63.624.0Oyama440054630535.0248.0287.0Peachland410090*269*162.0100.062.0Pinaus, Little3100120*1717.00.0*17.0*Postill450060*226118.00.0118.0Round480050*3535.00.0*17.0*Postill450060*25.013.0*12.0*Suurs3100120*7050.021.029.0Round4800	Hereron	5200	60*		25.0	15.0*	
Ideal440050*420255.07.0248.0Jackpine43009010675.40.075.4James450060*140108.00.0108.0Kaiser Bill450050*8264.335.329.0Lady King33001901515.00.0*15.0*Lady King3800103182126.00.0*126.0Lone Pine5500240*2525.00.0*15.0*Lost450055*4545.018.0*27.0*McCall330090*1515.00.0*15.0*Madden28002151717.06.011.0Munro5200823527.63.624.0Oyama440054630535.0248.0287.0Peachland410090*269162.0100.062.0Pinaus3300122407399.0347.052.0Pinaus, Little31002091313.03.0110.0Round480050*3535.00.0*35.2South450060*226118.00.0118.0Ripley31002091313.0*3.010.0South450060*25.013.0*12.0*South450060*505050.050South4500 <td< td=""><td></td><td></td><td></td><td>30</td><td></td><td></td><td></td></td<>				30			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Jame's450060*140108.00.0108.0Kaiser Bill45005066.00.0*6.0*King Edward450050*8264.335.329.0Lady King33001901515.00.0*15.0*Lambly3800103182126.00.0126.0Lone Pine5500240*2525.00.0*15.0*Lost450055*4545.018.0*27.0*McCall330090*1517.00.0*15.0*Madden28002151717.06.011.0Munro5200823527.63.624.0Oyama440054630535.0248.0287.0Peachland410090*269*162.0100.062.0Pinaus3300122407399.0347.052.0Pinaus, Little31002091313.03.010.0Rose Valley2000120*7050.021.029.0Round480050*3535.00.0*35.0*South450060*2525.010.025.0*South450050*3535.00.0*35.0*South450060*2525.010.025.0*South450050*3535.00.0*35.0*South <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Kaiser Bill45005066.00.0*6.0*King Edward450050*8264.335.329.0Lady King33001901515.00.0*15.0*Lambly3800103182126.00.0*126.0Lone Pine5500240*2525.00.0*25.0*Lost450055*4545.018.0*27.0*McCall330090*1515.00.0*15.0*Madden28002151717.06.011.0Murro5200823527.63.624.0Oyama440054630535.0248.0287.0Peachland410090*269162.0100.062.0Pinaus3300122407399.0347.052.0Pinaus3300122*1717.00.0*17.0*Postill450060*226118.00.0118.0Rose Valley2000120*7050.021.029.0Round480050*3535.00.0*35.0*Silver340090*3024.29.015.2South450060*5050.050.050.0Square36002152525.020.05.0Swalwell450060*50*5050.050.0Swalwell<							
King Edward450050*8264.335.329.0Lady King33001901515.00.0*15.0*Lambly3800103182126.00.0126.0Lone Pine5500240*2525.00.0*25.0*Lost450055*4545.018.0*27.0*McCall330090*1515.00.0*15.0*Madden28002151717.06.011.0Murro5200823527.63.624.0Oyama440054630e535.0248.0287.0Peachland410090*269162.0100.062.0Pinaus3300122407399.0347.052.0Pinaus, Little3100120*1717.00.0*17.0*Postill450060*226118.00.0118.0Round480050*3535.024.29.0*Round480050*3535.00.0*15.2*South450060*6025.013.0*12.0*Square36002152525.020.05.0*Square36002152525.020.05.0*Square36002152525.020.05.0*Swan1300320973973.00.0973.0Swan <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Lady King Lambly33001901515.00.0*15.0*Lambly3800103182126.00.0126.0Lone Pine5500240*2525.00.0*25.0*Lost450055*4545.018.0*27.0*McCall330090*1515.00.0*15.0*Madden28002151717.06.011.0Munro5200823527.63.624.0Oyama440054630535.0248.0287.0Peachland410090*269162.0100.062.0Pinaus3300122407399.0347.052.0Pinaus, Little3100120*1717.00.0*17.0*Postill450060*226118.00.0118.0Ripley31002091313.03.010.0Rose Valley2000120*7050.021.029.0South450060*6025.013.0*12.0*South450060*6025.013.0*12.0*South450060*6025.013.0*12.0*South450050*3535.00.05.0South45006375050.05.045.0South45006375050.05.045.0Swan </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Lambly3800103182126.00.0126.0Lone Pine5500240*2525.00.0*25.0*Lost450055*4545.018.0*27.0*McCall330090*1515.00.0*15.0*Madden28002151717.06.011.0Murro5200823527.63.624.0Oyama440054630535.0248.0287.0Peachland410090*269e162.0100.062.0Pinaus3300122407399.0347.052.0Postill450060*226118.00.0118.0Ripley3100120*1717.00.0*15.2Sound480050*3535.021.029.0Round480050*3535.00.0*35.0*South450060*6025.013.0*12.0*South450060*6025.013.0*12.0*Square36002152525.020.05.0Streak45006375050.05.045.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0							
Lone Pine5500240*2525.00.0*25.0*Lost450055*4545.018.0*27.0*McCall330090*1515.00.0*15.0*Madden28002151717.06.011.0Munro5200823527.63.624.0Oyama440054630535.0248.0287.0Peachland410090*269*162.0100.062.0Pinaus3300122407399.0347.052.0Pinaus, Little3100120*1717.00.0*118.0Ripley31002091313.03.010.0Round480050*3535.00.0*35.0*South450060*6025.013.0*12.0*South450060*5025.013.0*12.0*Square36002152525.020.05.0Streak450050*5050.05.045.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0							
Lost450055*4545.018.0*27.0*McCall330090*1515.00.0*15.0*Madden28002151717.06.011.0Munro5200823527.63.624.0Oyama440054630535.0248.0287.0Peachland410090*269e162.0100.062.0Pinaus3300122407399.0347.052.0Pinaus,Little3100120*1717.00.0*17.0*Postill450060*226118.00.0118.0Ripley31002091313.03.010.0Round480050*3535.00.0*35.0*Silver340090*3024.29.015.2South450060*6025.013.0*12.0*Square36002152525.020.05.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0						0.0*	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4500	55*		45.0	18.0*	
Munro5200823527.63.624.0Oyama440054630535.0248.0287.0Peachland410090*269°162.0100.062.0Pinaus3300122407399.0347.052.0Pinaus,Little3100120*1717.00.0*17.0*Postill450060*226118.00.0118.0Ripley31002091313.03.010.0Rose Valley2000120*7050.021.029.0Round480050*3535.00.0*35.0*Silver340090*3024.29.015.2South450060*6025.013.0*12.0*Square36002152525.020.05.0Swalwell450050*5050.02.045.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0							
Oyama440054630 269e535.0248.0287.0Peachland410090*269e162.0100.062.0Pinaus3300122407399.0347.052.0Pinaus,Little3100120*1717.00.0*17.0*Postill450060*226118.00.0118.0Ripley31002091313.03.010.0Rose Valley2000120*7050.021.029.0Round480050*3535.00.0*35.0*Silver340090*3024.29.015.2South450060*6025.013.0*12.0*Square36002152525.020.05.0Streak450050*5050.05.045.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0							
Peachland410090*269°162.0100.062.0Pinaus3300122407399.0347.052.0Pinaus,Little3100120*1717.00.0*17.0*Postill450060*226118.00.0118.0Ripley31002091313.03.010.0Rose Valley2000120*7050.021.029.0Round480050*3535.00.0*35.0*Silver340090*3024.29.015.2South450060*6025.013.0*12.0*Square36002152525.020.05.0Streak45006375050.05.045.0Swalwell450063750548.0288.0260.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0							24.0
Pinaus3300122407399.0347.052.0Pinaus,Little3100120*1717.00.0*17.0*Postill450060*226118.00.0118.0Ripley31002091313.03.010.0Rose Valley2000120*7050.021.029.0Round480050*3535.00.0*35.0*Silver340090*3024.29.015.2South450060*6025.013.0*12.0*South450060*5050.05.05.0Streak450050*5050.05.045.0Swalwell450063750548.0288.0260.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0			54	630 200e			
Pinaus,Little3100120*1717.00.0*17.0*Postill450060*226118.00.0118.0Ripley31002091313.03.010.0Rose Valley2000120*7050.021.029.0Round480050*3535.00.0*35.0*Silver340090*3024.29.015.2South450060*6025.013.0*12.0*Square36002152525.020.05.0Streak450050*5050.05.045.0Swalwell450063750548.0288.0260.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0							52.0
Postill450060*226118.00.0118.0Ripley31002091313.03.010.0Rose Valley2000120*7050.021.029.0Round480050*3535.00.0*35.0*Silver340090*3024.29.015.2South450060*6025.013.0*12.0*Square36002152525.020.05.0Streak450050*5050.05.045.0Swalwell450063750548.0288.0260.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0	Pinaus Little						
Ripley31002091313.03.010.0Rose Valley2000120*7050.021.029.0Round480050*3535.00.0*35.0*Silver340090*3024.29.015.2South450060*6025.013.0*12.0*Square36002152525.020.05.0Streak45006375050.050.045.0Swalwell450063750548.0288.0260.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0	Postill		60*			0.0	
Rose Valley2000120*7050.021.029.0Round480050*3535.00.0*35.0*Silver340090*3024.29.015.2South450060*6025.013.0*12.0*Square36002152525.020.05.0Streak450050*5050.05.045.0Swalwell450063750548.0288.0260.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0							
Round480050*3535.00.0*35.0*Silver340090*3024.29.015.2South450060*6025.013.0*12.0*Square36002152525.020.05.0Streak450050*5050.05.045.0Swalwell450063750548.0288.0260.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0				70	50.0		
Silver340090*3024.29.015.2South450060*6025.013.0*12.0*Square36002152525.020.05.0Streak450050*5050.05.045.0Swalwell450063750548.0288.0260.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0	Round		50*	35	35.0	0.0*	35.0*
Square36002152525.020.05.0Streak450050*5050.05.045.0Swalwell450063750548.0288.0260.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0					24.2		15.2
Streak450050*5050.05.045.0Swalwell450063750548.0288.0260.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0							
Swalwell450063750548.0288.0260.0Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0							
Swan1300320973973.00.0973.0Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0							45.0
Whitehead470055*10585.011.074.0Wilma450090*2525.05.020.0							
Wilma 4500 90* 25 25.0 5.0 20.0							
TUTALS (5/) /338 5808.8						0.0	20.0
	TOTALS (57)			7338	5808.8		l

^a From Koshinsky and Andres (MS 1972) or MacDonald (personal communication) unless indicated*, in which case estimated by comparison with adjacent lakes .

^b From B.C. Water Resources Service unless indicated*, in which case estimated

by reference to lakes of similar size and location

Includes Dee, Island, Deer and Crooked Lakes.

d Includes Big Eneas, Little Eneas and Island Lakes.

^e Incorporates an upward revision for area of Peachland Reservoir at full supply level from 60 acres (Koshinsky and Andres, MS 1972) to 269 acres (Botham, personal communication).

APPENDIX B

SUMMARY	OF	TROU	Г CARR	YING	CAPA	CITIES	AND	ACTUAL	TROUT	INTRODUCTIONS
	Т	0 57	"KEY"	OKAN	IAGAN	HEADWA	ATER	LAKES.	1967-1	.971ª

				·			**************************************
	BASIC ANNUAL FRY		S IN			KING	AVERAGE NO. STOCKED
LAKE	CARRYING CAPACITY NO. AT 2500/16.		WAS U				ANNUALLY ^b AT 2500/1b EQUIVALENT
Agur	22,200	'67 x	' <u>68</u> x	'69 X	'70	'71	14,467
Alex	23,300	^	l î				0
Allendale	104,900	х	x	X		х	38,170
Bardolf Bear	<u>28,800</u> 30,000		X	X	X	X	26,978
Becker	39,400			x			6,259
Bouleau	246,800						0
Browne	81,700 71,300	X		X	X		44,674
Burnell Chute	79,900	х	х	x		×	22,767
Darko	137,800	х	x	x	х	x	39,363
Dee Chain ^C	659,900	<u>x</u>	<u>x</u>		x	X	240,078
Deep Deer (Tsuh)	6,800 53,100	х	X	x	х	x	13,630
Echo ,	59,500	х	x	x	x	x	32,804
Echo Eneas ^d	38,200						0
Esperon Fich Hawk	58,000		x	x	х	×	17,789
Fish Hawk Garnet Valley	<u>63,600</u> 105,800		xe xe	xe	xe		93,241
Geen	57,000						0
Glen	27,800	х	x	х	х	х	26,252
Haynes Headwater #1	<u>85,800</u> 253,800	X X	<u>×</u>	X	X X	X X	<u>17,233</u> 91,007
#2	73,100	^	}	x	x	x	52,970
# 3	67,500			х	х	х	18,315
#4	<u>36,200</u> 18,400			X	<u>x</u>	X	17,341
Hereron High	12,600					x	0
Hydraulic	540,400	x		<u> </u>		<u> </u>	18,133
Ideal	373,100		X				7,500
Jackpine James	143,300 172,800	x	X	X	X	х	48,770
Kaiser Bill	9,000		ł				0
King Edward	48,800						0
Lady King	43,500	X	X	X	X	x	14,467
Lambly Lone Pine	255,800 85,000	<u> </u>	X	X	X		78,985
Lost	44,600		x	x	x	×	14,307
McCall	28,500	х	X	×	X	xe xe	8,952
Madden Munro	36,500 44,300	X X	X X	X X	x x	X X	<u>37,422</u> 23,333
Oyama	481,700	^	x	x	x	x	51,389
Peachland	136,800				×		6,704
Pinaus	192,500	x	X	X	×	x	182,556
Pinaus (Little) Postill	37,400 188,800	x	x	x	X	×	18,230
Ripley	31,800	x	x	x	x	x	32,430
Rose Valley	68,400	x	<u>x</u>		x	x	46,607
Round Silver	52,500					x	13,926
South	30,600 21,300	X	<u> </u>	×	<u>×</u>	X	15,911
Square	22,000	x	x	х	x	x	15,974
Streak	68,300						0
Swalwell Swan	470,700 3,405,500	X	X		X	x	243,052
Whitehead	116,400				x	1	6,704
Wilma	39,000	x	x		x	x	18,604
TOTALS (57)	9,732,500	(40	lakes	stoc	ked a	t leas	t 1,728,405
					0	nce)	l

^a From B.C. Fish and Wildlife Branch Annual Reports.

^b Based on number of years since trout were first stocked within this particular 5-year period. ⁶ Includes Dee, Island, Deer, and Crooked Lakes. ^d Includes Big Eneas, Little Eneas, and Island Lakes. ^e Indicates brook trout; remainder are all rainbow trout.

APPENDIX C

SUMMARY OF TROUT INTRODUCTIONS TO "ADDITIONAL" (NON-KEY) OKANAGAN HEADWATER LAKES, 1967-1971^a

^a From B.C. Fish and Wildlife Branch Annual Reports.

 $^{\rm b}$ Based on number of years since trout were first stocked within this particular 5-year $\,$ period.

° Indicates brook trout; remainder are all rainbow trout.

APPENDIX D

SIZE DISTRIBUTION OF TROUT STOCKED IN OKANAGAN HEADWATER LAKES, 1967-1971°

	RA	INBOW TR	0UT	В	ROOK TROU	JT	В	OTH SPECI	ES
		% DISTR	IBUTION		% DISTR		% DISTRIBUTION		
			ACCORD-			ACCORD-			ACCORD-
	ACTUAL	ACCORD-	ING TO	ACTUAL	ACCORD-	ING TO	ACTUAL	ACCORD-	ING TO
SIZE	NUMBER	ING TO	EQUIVA-	NUMBER	ING TO	EQUIVA-	NUMBER	ING TO	EQUIVA-
CLASS	STOCKED,	ACTUAL	LENT	STOCKED,	ACTUAL	LENT	STOCKED,		LENT
NO./LB.	x 1000	SIZE	SIZE	x 1000	SIZE	SIZE	x 1000	SIZE	SIZE
< 50	55.75	3.2	5.9	0.0	0.0	0.0	55.75	3.1	5.6
50-99	191.29	11.1	18.0	0.0	0.0	0.0.	191.29	10.6	17.2
100-199	200.45	11.6	16.3	0.0	0.0	0.0	200.45	11.1	15.5
200-299	91.00	5.3	6.0	56.5	69.3	79.1	147.50	8.2	9.3
300-399	172.50	10.0	9.9	0.0	0.0	0.0	172.50	9.6	9.4
400-499	359.50	20.9	18.1	0.0	0.0	0.0	359.50	19.9	17.3
500-599	193.00	11.2	8.5	0.0	0.0	0.0	193.00	10.7	8.2
600-699	351.50	20.4	14.0	25.0	30.7	20.9	376.50	20.9	14.3
700-799	0.00	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.0
800-899	37.00	2.2	1.2	0.0	0.0	0.0	37.00	2.0	1.2
900-999	65.00	3.8	2.0	0.0	0.0	0.0	65.00	3.6	1.9
1600-1699	5.00	0.3	0.1	0.0	0.0	0.0	5.00	0.3	0.1
TOTAL,									
1967-71	1721.99	100.0	100.0	81.5	100.0	100.0	1803.49	100.0	100.0
Average									
Annual	344.4			16.3			360.7		

^a From B.C. Fish and Wildlife Branch Annual Reports.

<u>APPENDIX E</u>

COMPARISON OF RAINBOW TROUT HARVESTS AND VIRTUAL POPULATIONS ESTIMATED FROM "MOST PROBABLE" AVERAGE ANNUAL SURVIVAL RATES, 12 OKANAGAN HEADWATER LAKES, 1971

	AGUR	BROWNE	DARKE	ECHO	JACKPINE	LAMBLY	MADDEN	MUNRO	PINAUS	RIPLEY	SILVER	WILMA
<u>Elevation, feet:</u>	3800	4300	3000	4800	4300	3800	2800	5200	3300	3100	3400	4500
Present (1971) fishery:												
Angling-hours per acre Number caught per acre Average weight, lb. Average age, years	73 57 0.40 2+	77 47 0.39 2+	73 50 0.50 2+	13 13 0.59 5+	39 8 0.86 5+	48 38 0.40 2+	199 33 0.73 2+	16 14 0.41 4+	197 51 0.78 2+	262 115 0.45 2+	33 22 0.88 2+	19 15 0.49 3+
Fry stocked (on basis of	2500/1	b) in ye	ar whic	h gave	rise to t	rout of	average	age in	<u>catch</u> :			
Number per acre	1804	727	1052	852	276	367	2036	663	478	2644	731	752
<u>Virtual population by age</u>	<u>class</u>	:										
Number per acre 1+ 2+ 3+ 4+ 5+ 6+ At avg. age in catch Virtual population at ave	361 180 108 81 61 30 162	145 72 43 32 24 12 63 ge in ca	210 105 63 47 35 17 94 tch, le	170 85 51 38 28 14 24	55 27 16 12 9 4 8 wal anglin	73 36 22 16 12 6 32	407 203 122 91 69 34 183	133 66 40 30 22 11 28	96 48 29 22 16 8 43	529 264 158 118 88 44 238	146 73 44 33 25 12 66	150 75 45 34 25 12 42
Number per acre % "error"	+105 + 65	+16 +25	+44 +47	+11 +46	00	- 6 -19	+150 + 82	+14 +50	- 8 -19	+123 + 52	+ 4 4 + 6 7	+27 +64

MEASURED AVERAGE FORK LENGTHS (CENTIMETERS) - AT-AGE OF RAINBOW TROUT IN 10 OKANAGAN HEADWATER LAKES ACCORDING TO ELEVATION. 1971^a

			A	GE, YEARS		
LAKE(S)	ELEVATION, FT.	1+	2+	3+	4+	5+
Pinaus Lambly, Agur Headwaters #1, Jackpine, Oyama,		- 12 12.7	29 24.5 20	40 20 25.5	43 33 30.2	45 36 41
Swalwell Alex Munro Fish Hawk	4501 - 5000 5001 - 5500 > 5500	- 12 8	15 22 15	25 27 19	30 30 22	35 - 24

^a Data from Koshinsky and Andres (MS 1972).

<u>APPENDIX F</u>

ESTIMATED "PRESENT" AVAILABLE AND PRESENT (1971) REALIZED ANNUAL TROUT HARVEST FOR 57 "KEY" OKANAGAN HEADWATER LAKES

	PRESENT ANNUAL A	VAILABLE HARVEST ^a	RECORDED HARVEST, 1971			
	NUMBER	POUNDS	NUMBER	POUNDS		
Agur	1302	625	427	205		
Alex	0	0	179	93		
Allendale	1611	838	2838	1476		
<u>Bardolph</u> Bear	2428	<u>1578</u>	791 227	<u>514</u> 100		
Becker	563	270	388	186		
Bouleau	0	0	3840	1997		
Browne	2511	1104	2570	1131		
Burnell Chute	2049 0	1332	0 879	0 422		
Darke	3543	2303	2745	1784		
Dee Chain	13492	5936	9039	3977		
Deep Deep	1227	798	539	350		
<u>Deer (Tsuh)</u> Echo	1384	<u> </u>	2106	1095 264		
Eneas	0	0	508	282		
Esperon	751	285	526	200		
Fish Hawk	0	0	288	69		
Garnet Valley Geen	8392	5455 0	494 182	321 69		
Glen	2363	1134	10	5		
Haynes	968	425	89	39		
Headwaters #1	5115	2251	539	237		
<u>#2</u> #3	<u>2977</u> 1029	<u>1310</u> 453	<u>209</u> 450	92 198		
#3 #4	975	429	227	100		
Hereron	0	0	111	42		
High	624	275	441	194		
Hydraulic Ideal	1632 422	784 186	90 1302	43 573		
Jackpine	2741	1206	1698	747		
James	0	0	159	70		
Kaiser Bill King Edward	0	0	227 230	100 101		
Lady King	1302	846	488	317		
Lambly	7109	3412	5742	2756		
Lone Pine	0	0	1603	609		
Lost McCall	<u>804</u> 806	<u>354</u> 524	186	<u>82</u> 90		
Madden	3368	2189	631	410		
Munro	985	374	511	194		
Oyama	2888	1271	5014	2206		
Peachland Pinaus	377 16430	166 10679	2225 24921	979 16199		
Pinaus, Little	1641	1067	51	33		
Postill	0	0	6030	2653		
Ripley	2919	1897	1038	675		
Rose Valley Round	<u>4195</u> 588	2727 306	837	544 265		
Silver	1432	931	878	571		
South	0	0	695	306		
Square	1438	690	2729	1310		
Streak Swalwell	0 13659	0 6010	439 33400	193 14696		
Swan	0	0	135	88		
Whitehead	283	147	1963	1021		
Wilma	1046	460	411	181		
TOTALS (57)	119,369	63,747	125,465	63,454		

^a Based on mean annual stocking 1967-1971.

APPENDIX G

SUGGESTED MINIMUM DISCHARGE REQUIREMENTS, AND PRESENT AVERAGE MOST CRITICAL SEASONAL DISCHARGES AVAILABLE FOR RESIDENT TROUT PRODUCTION IN OKANAGAN TRIBUTARY STREAMS

		ME AN ANNUA L	SUGGESTED "MINIMAL OPTIMUM" FISHERY			PRESENT AVERAGE M SEASONAL DISCHARGE	OST CRITICAL ^d AVAILABLE,CFS
CREEK AND REACH	GAUGING STATION ^D	NATURAL DISCHARGE cfs ^b ,c		ARGE REQUIR OCT MARCH		- SUMMER TO EARLY AUTUMN	WINTER
B-X, Upper B-X, Lower Coldstream Deep Equesis Ellis Inkaneep Kelowna Lambly Mission (a) (b) (c) Peachland Penticton Powers Shingle (a) (b) Shorts Shuttleworth	MP - 14 MP - 16 MP - 10 MP - 2 MP - 2 MP - 9 MP - 6 MP - 10 MP - 10 MP - 16 MP - 7 MP - 5 MP - 7 MP - 5	7.8 9.5 16.1 11.6 19.6 22.3 48.9 101.3 145.6 173.1 19.9 37.9 18.9 45.0 ^e	$\begin{array}{r} 2.3\\ 2.9\\ 4.8\\ 3.5\\ 5.9\\ 3.5\\ 3.5\\ 6.7\\ 14.7\\ 30.4\\ 43.7\\ 51.9\\ 6.0\\ 11.4\\ 5.7\\ 3.5\\ 3.5\\ 3.5\\ 13.5\\ 3.5\\ 13.5\\ 3.5\\ 3.5\end{array}$	2.0 2.0 2.4 2.0 2.9 2.0 2.0 3.3 7.3 15.2 21.8 26.0 3.0 5.7 2.8 2.0 2.0 6.8 2.0	$ \begin{array}{c} 1.5\\ 1.5\\ 1.5\\ 1.6\\ 1.5\\ 2.0\\ 1.5\\ 2.2\\ 4.9\\ 10.1\\ 14.6\\ 17.3\\ 2.0\\ 3.8\\ 1.9\\ 1.5\\ 1.5\\ 4.5\\ 1.5\\ 4.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1$	$\begin{array}{c} 0.1\\ 0.5\\ 1.0\\ 0.8\\ 5.5\\ 4.0\\ 0.5\\ 3.6\\ 2.5\\ 20\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25$	$\begin{array}{c} 0.1\\ 0.5\\ 1.0\\ 2.3\\ 3.0\\ 1.0\\ 0.5\\ 2.6\\ 5.0\\ 15\\ 15\\ 20\\ 2.0\\ 2.0\\ 2.0\\ 1.0\\ 1.1\\ 2.0\\ 4.0\\ 0.5\\ \end{array}$
Shuttleworth Trepanier Trout (a) b,c) Vaseux Vernon (a) (b) Whiteman (a) (b)	CP-1,2 MP-9 CP-2 CP-5 	38.7 ^e 13.8 68.6 26.1 101.3 23.5 ^f 22.1 ^f	3.5 11.6 4.1 20.6 3.5 7.8 30.4 7.1 6.6	2.0 5.8 2.1 10.3 2.0 3.9 15.2 3.5 3.3	1.5 3.9 1.5 6.9 1.5 2.6 10.1 2.4 2.2	3.0 4.5 12.0 17.0 4.0 4.0 7.0 5.0 5.0	0.5 3.0 1.0 5.7 4.0 4.0 4.0 4.0 4.0

 $^{\rm b}$ As given by Smyth (MS 1973) except where otherwise indicated.

^c As pertaining to a "dry" year (Smyth MS 1973)

Estimated at mouth by McNeil (personal communication).

^f Estimated by reference to 45.6 cfs mean annual discharge at mouth (McNeil, personal communication).

^d Estimated from various sources including Smyth (MS 1973), and personal communications from McNeil, Botham, and B.C. Fish and Wildlife Branch personnel.

APPENDIX H

PREDOMINANT CONSTRAINTS TO RESIDENT FISH PRODUCTION AND ANGLING UTILIZATION OF TRIBUTARY STREAMS IN THE OKANAGAN BASIN^a (ALSO GIVEN ARE SUGGESTED ACTION PRIORITIES FOR LESSENING CONSTRAINTS)

CREEK AND REACH	CONSTRAINTS						
B-X, Upper	Heavy water abstraction						
B-X, Lower Coldstream	Industrial and urban development						
Deep	Heavy water abstraction for consumptive uses						
Equesis	Indian Land						
Ellis Inkaneep	<u>Consistently dries up in summer</u> Indian land						
Kelowna	Industrial and urban development						
Lambly	Heavy water abstraction						
Mission (a)	Poor access						
(b)	Generally poor access						
(c)	Some channelization						
Peachland	Poor access						
Penticton Powers	Generally poor access						
Shingle (a)	Generally poor access Some Indian Land						
(b)	Private and Indian land						
Shorts	Some private land						
Shuttleworth	Heavy water abstraction						
Trepanier	Heavy water abstraction						
Trout (a)	Generally poor access						
(b)	Sporadic access						
(c) Vaseux	Sporadic access						
Vernon (a)	Generally poor access						
(b)	Excessive development						
Whiteman	Sporadic access						

^a Developed from observations of S. MacDonald (personal communication).

APPENDIX I1

SUMMARY OF GILLNET CATCHES FROM WOOD LAKE, 1971 ", b

	NUMBER	CAUGHT	WEIGHT OF	WEIGHT OF CATCH, LB.		
SPECIES	TOTAL	%	TOTAL	%		
Kokanee	33	9.76	5.09	2.80		
Rainbow Trout	3	0.89	1.06	0.59		
Mountain whitefish	5	1.48	1.65	0.91		
Largescale sucker	38	11.24	36.02	19.83		
Carp	22	6.51	69.36	38.19		
Squawfish	69	20.41	42.59	23.45		
Peamouth chub	164	48.52	25.31	13.94		
Chiselmouth	4	1.19	0.53	0.29		
TOTALS	338	100.00	181.61	100.00		

^a Data of Northcote *et al.* (Ms 1972), as further analysed by Tautz (personal communication).

^b Based on total effort of 253.16 gang-hours.

	NUMBER	CAUGHT	WEIGHT OF	CATCH, LB.
SPECIES	TOTAL	%	TOTAL	%
Kokanee	306	31.61	53.97	9.65
Rainbow Trout	67	6.92	48.74	8.72
Lake trout	92	9.50	210.94	37.73
Mountain whitefish	6	0.62	3.84	0.69
Largescale sucker	65	6.72	53.02	9.49
Carp	20	2.07	65.70	11.75
Squawfish	96	9.92	74.07	13.25
Peamouth chub	315	32.54	48.61	8.70
Chiselmouth	1	0.10	0.13	0.02
TOTALS	968	100.00	559.02	100.00

APPENDIX I2

SUMMARY OF GILLNET CATCHES FROM KALAMALKA LAKE, 1971 ", b

^a Data of Northcote *et al.* (MS 1972) as further analysed by Tautz (personal communication).

^b Based on total effort of 517.00 gang-hours.

<u>APPENDIX I</u> 3							
SUMMARY OF GIL	LNET CATCHES	FROM OKANAGAN	J LAKE				
(ALL REGIONS COMBINED), 1971 ^{a,b}							

	NUMBER	CAUGHT	WEIGHT OF	CATCH, LB.
SPECIES	TOTAL	%	TOTAL	%
Kokanee	2179	34.86	741.54	17.71
Rainbow Trout	166	2.66	200.31	4.79
Mountain whitefish	338	5.41	146.26	3.49
Burbot	114	1.82	420.73	10.05
Lake whitefish	634	10.15	625.35	14.94
Largescale sucker	455	7.28	519.47	12.41
Longnose sucker	39	0.62	72.62	1.73
Carp	55	0.88	325.75	7.78
Squawfish	718	11.49	839.18	20.05
Peamouth chub	1449	23.98	286.55	6.84
Chiselmouth	40	0.64	7.94	0.19
Prickly sculpin	13	0.21	0.86	0.02
TOTALS	6250	100.00	4186.56	100.00

^a Data of Northcote *et al.* (MS 1972), as further analysed by Tautz (personal communication).

^b Based on total effort of 2260.87 gang-hours.

	NUMBE	R CAUGHT	WEIGHT (OF CATCH, LB.
SPECIES	TOTAL	%	TOTAL	%
Kokanee	371	13.33	229.01	9.04
Rainbow Trout	23	0.83	17.75	0.70
Mountain whitefish	77	2.77	47.53	1.88
Burbot	4	0.14	11.91	0.47
Pumpkinseed	2	0.07	0.35	0.02
Lake Whitefish	468	16.82	1042.07	41.14
Largescale sucker	307	11.03	345.17	13.63
Longnose sucker	11	0.39	21.83	0.86
Carp	49	1.76	180.40	7.12
Squawfish	377	13.54	324.14	12.80
Peamouth chub	996	35.79	263.49	10.40
Chiselmouth	97	3.49	49.19	1.94
Prickly sculpin	1	0.04	0.07	+
TOTALS	2783	100.00	2532.91	100.00

APPENDIX I4

SUMMARY OF GILLNET CATCHES FROM SKAHA LAKE, 1971 a,b

^a Data of Northcote *et al.* (MS 1972), as further analysed by Tautz (personal communication).

^b Based on total effort of 505.00 gang-hours.

APPENDIX I

SUMMARY OF GILLNET CATCHES FROM VASEUX LAKE, 1971 a,b

	NUMBER	CAUGHT	WEIGHT OF	CATCH, LB.
SPECIES	TOTAL	%	TOTAL	%
Kokanee	15	0.66	10.25	1.18
Rainbow Trout	4	0.18	3.00	0.35
Mountain whitefish	22	0.97	9.22	1.06
Yellow perch	47	2.08	11.40	1.32
Black Bullhead	56	2.48	13.58	1.57
Pumpkinseed	7	0.31	1.39	0.16
Lake Whitefish	411	18.21	317.13	36.67
Largescale sucker	102	4.52	94.45	10.92
Carp	13	0.58	38.12	4.41
Squawfish	150	6.65	112.43	13.00
Peamouth chub	1423	63.05	250.97	29.02
Chiselmouth	7	0.31	2.93	0.34
TOTALS	2257	100.00	864.87	100.00

^a Data of Northcote *et al.* (MS 1972), as further analysed by Tautz (personal communication).

^b Based on total effort of 249.41 gang-hours.

	NUMBER	CAUGHT	WEIGHT OF	CATCH, LB.
SPECIES	TOTAL	%	TOTAL	%
Kokanee	307	27.94	54.14	5.82
Rainbow Trout	12	1.09	12.43	1.34
Mountain Whitefish	42	3.82	29.63	3.18
Smallmouth bass	12	1.09	14.55	1.56
Yellow Perch	52	4.73	6.88	0.74
Black Bullhead	3	0.27	0.73	0.08
Pumpkinseed	3	0.27	0.60	0.06
Lake Whitefish	80	7.28	128.75	13.84
Largescale Sucker	37	3.37	64.44	6.93
Longnose Sucker	171	15.56	335.52	36.06
Carp	43	3.91	113.76	12.23
Squawfish	56	5.10	62.96	6.77
Peamouth Chub	104	9.46	48.15	5.18
Chiselmouth	174	15.84	57.54	6.18
Pygmy Whitefish	1	0.09	0.20	0.02
Prickly Sculpin	2	0.18	0.13	0.01
TOTALS	1099	100.00	930.41	100.00

APPENDIX I

SUMMARY OF GILLNET CATCHES FOR OSOYOOS LAKE, 1971 a,b

^a Data of Northcote *et al*. (MS 1972), as further analysed by Tautz (personal communication).

^b Based on total effort of 341.00 gang-hours.

APPENDIX I, SYNOPSIS OF GILLNET CATCHES BY SPECIES, GROUPS^a OKANAGAN MAIN VALLEY LAKES, 1971

	WOOD	KALAMALKA	OKANAGAN	SKAHA	VASEUX	OSOYOOS
Total gillnet effort,gang-hours	253.16	517.00	2260.87	505.00	249.41	341.00
Total gillnet catch,lb/gang-hr. Preferred sport fishes Marginal sport fishes Preferred commercial fishes Preferred coarse fishes Marginal coarse fishes All species	0.031 0.000 0.000 0.416 0.270 0.717	0.614 0.000 0.000 0.230 0.237 1.081	0. 482 0.186 0.277 0.406 0.501 1.852	0.583 0.024 2.064 1.084 1.261 5.016	0.090 0.106 1.271 0.532 1.469 3.468	0.325 0.024 0.378 1.506 0.495 2.728
Percent composition by weight of gillnet catches						
Preferred sport fishes Marginal sport fishes Preferred commer cial fishes Preferred coarse fishes Marginal coarse fishes All species	4.3 0.0 58.0 37.7 100.0	56.8 0.0 21.2 22.0 100.0	26.0 10.1 14.9 21.9 27.1 100.0	11.6 0.5 41.1 21.6 25.2 100.0	2.6 3.0 36.7 15.3 42.4 100.0	11.9 0.9 13.8 55.2 18.2 100.0

^a For composition of species groups, See Table 5.1 ^b Data of Northcote *et al*. (MS 1972), as further analysed by Tautz (personal communication)

<u>APPENDIX J</u>

DERIVATION OF PRESENT ANNUAL CARRYING CAPACITY ESTIMATES FOR KOKANEE FRY, REFERABLE TO NUMBERS OF KOKANEE SPAWNERS SUPPORTABLE, OKANAGAN MAIN VALLEY LAKES.

	WOOD	KALAMALKA	OKANAGAN	SKAHA	VASEUX	OSOYOOS
Surface area, acres ^a	2298	6,400	85,990	4,967	680	3,719
Average concentration crustacean zooplankton ^b , mm ⁴ /cm ² Zooplankton concentration relative to Okanagan Lake Estimated plankton abundance index	31.10 2.95 4.90	10.90 1.03 1.71	10.55 1.00 1.66 ^e	23.65 2.24 3.72	23.65 ^c 2.24 ^c 3.72	18.40 1.74 2.89
Effective female sockeye spawners supportable, x 100	1,126	1,094	14,275	1,848	253	1,075
Average fork length (mm) of mature kokanee Average number of eggs per kokanee female Estimated female kokanee spawners supportable, x 100 Estimated total kokanee spawners supportable, x 100	238 351 4,010 8,020	215 240 5,698 11,396	259 474 37,645 75,290	330 990 2,333 4,666	290 654 484 968	249 401 3,1819 6,362

^a From Stockner, Table 8 (Okanagan Basin Manuscript Report, 1973).

^b From Patalas and Salki (" " " , 1973).

[°] Estimated by reference to Skaha Lake.

^d By reference to relative average Zooplankton concentration in conjunction with specific P.A.I, estimate for Okanagan Lake.

^e From Halsey (Okanagan Basin Manuscript Report, 1972).

^f Assuming 3500 successfully-deposited eggs per female

^g Incorporates an adjustment to accommodate average sockeye escapement.

<u>APPENDIX K</u> <u>SAMPLE CALCULATION OF PRESENT CARRYING CAPACITY</u> (OF OSOYOOS LAKE) FOR KOKANEE SPAWNERS

A. <u>Basic carrying capacity:</u>

Plankton abundance index for Osoyoos Lake

= P.A.I. for Okanagan x <u>(Avg. concentration of Zooplankton in Osoyoos)</u> (Avg. concentration of Zooplankton in Okanagan)

 $= 1.66 \times 18.40/10.55 = 2.89$

Area of Osoyoos Lake = 3,719 acres

Therefore, effective female sockeye spawners supportable

 $= 2.89 \times 10 \times 3719 = 107,479$

Avg. length of mature kokanee in Osoyoos Lake in 1971 = 249 mm. And average number of eggs per female spawners = 401.

Equivalent female kokanee spawners supportable

= (numbers of effective sockeye spawners supportable)

x (Ratio of effective sockeye: kokanee fecundities)

x (Ratio of effective sockeye: kokanee lake residence times)

= 107,479 x (3500/401) x (1.25/3.50) = 335,000

B. Adjustment for sockeye rearing requirement:

Avg.	fecundity of Okanagan River sockeye	= 2500 eggs	
Avg.	fecundity of Osoyoos Lake kokanee	= 401 eggs	
Avg.	sockeye residence period in Osoyoos Lake	= 1.0 years	
Avg.	kokanee residence period in Osoyoos Lake	= 3.5 years	
Avg.	sockeye escapement to Okanagan River	= 19,000 fi	sh

Sockeye rearing requirement is "equivalent" to: (Average sockeye female escapement) x (Ratio of actual sockeye: kokanee fecundities) x (Ratio of actual sockeye: kokanee lake residence times)

= $(19,000/2) \times (2500/401) \times (1.0/3.5) = 16,900$ female kokanee Therefore, carrying capacity of Osoyoos Lake for kokanee spawners

= (Basic carrying capacity) - (Sockeye requirement)

= 335,000 - 16,900 = 318,100 female kokanee

Which, at an assumed sex ratio of $1:1 = 6362 \times 10^2$ total kokanee

APPENDIX L

DERIVATION OF AVERAGE KOKANEE FECUNDITY, OKANAGAN MAIN VALLEY LAKES, 1971

LAKE	MEAN FORK LENGTH	MEAN FORK LENGTH	AVERAGE FECUNDITY,		
	'AT AGE 3, ^a	AT SPAWNING,	NUMBER OF		
	mm		EGGS PER FEMALE		
Wood	230	2 38 ^b	351 ^d		
Kalamalka	170	2 15 ^c	240 ^c		
Okanagan (central) Skaha	250 335	259 330 259	474 ^c 990		
Vaseux	280	290 ^b	654 ^d		
Osoyoos	240	249 ^b	401 ^d		

^a Interpreted from Northcote *et al.* (MS 1972, Fig. 11).

^b Derived from length at age 3 on basis of ratio of length at spawning/length at age 3 for Okanagan Lake.

[°] Average of direct determinations (Northcote *et al.* MS 1972, Appendix 4), weighted according to escapement in individual streams.

^d Derived from mean fork length at spawning according to the fecundity: length regression calculated from Northcote *et al.* (MS 1972, Appendix 4) i.e.: Log fecundity = 1.308 + 0.0052 (fork length in mm).

APPENDIX M

DERIVATION OF PRESENT ANNUAL CARRYING CAPACITY ESTIMATES FOR RAINBOW TROUT FRY (at 2500/lb). OKANAGAN MAIN VALLEY LAKES

	WOOD	KALAMALKA	OKANAGAN	ѕкана	VASEUX	0S0Y00S
Mean depth, feet ^a	72.2	193.6	249.3 ₆	85.3	21.3	56.6
Littoral area, acresa	208	359	7,636 ^b 78,354 ^b	784	336	863
Limnetic area, acres [°]	2,090	6,041	78,354	4,183	344	2,856
Total dissolved solids, ppm	211	252	164	164	164	168
Estimated basic carrying capacity for rainbow fry, x 1000	1,297	3,390	40,844	3,174	978	3,078
Concentration of total phosphorus relative to Okanagan Lake	7.30	0.47	1.00	2.57	2.57	2.43
Basic adjusted carrying capacity for rainbow fry, x 1000	9,468	1,593	40,844	8,157	2,513	7,480
Total Gillnet catch (lb) of "competitor niche group"	70.61	386.20	1893.03	665.16	401.99	175.93
Total Gillnet catch (lb) of rainbow trout only	1,06	48.74	200.31	17.75	3.00	12.43
Carrying capacity for rainbow fry adjusted for competition,	1					
× 1000	142	201	4,322	218	19	528
Total Gillnet catch (lb) of "predator complex"	43.65	333.75	1460.22	354.14	141.80	98.15
Total Gillnet catch (No.) of all species	338	968	6,250	2,783	2,257	1,102
Total Gillnet catch (No.) of rainbow trout only	3	67	166	23	4	12
Estimated rainbow (relative 1b) lost annually to predation	1.16	69.30	116.35	8.78	0.75	3.21
Additional "capacity" for rainbow fry due to predation,			1			
x 1000	74	118	1,588	72	4	108
Secondary (fully adjusted) carrying capacity for rainbow fry, x 1000	216	319	5,910	290	23	636

^a From Stockner (MS 1973), except where otherwise indicated.

^b Halsey, personal communication.

From Patatas and Salki (1973).

APPENDIX N

SAMPLE CALCULATION OF BASIC, BASIC ADJUSTED, SECONDARY, AND MOST PROBABLE ESTIMATES OF PRESENT CARRYING CAPACITY (OF OKANAGAN LAKE) FOR RAINBOW TROUT FRY

A. <u>Estimate of basic carrying capacity:</u>

<u>Assumption:</u> That the basic capacity of a lake to accept trout fry is given by the stocking formula, i.e. Basic carrying capacity = K(limnetic area) + 10K (Littoral area).

For Okanagan Lake:

K (based on TDS 164 ppm) = 264 Limnetic area = 78,354 acres Littoral area = 7,636 acres

Therefore basic carrying capacity = (20,685,456) + (20,159,040)= 40,844.000 fry at 2500/lb.

B. Estimate of basic adjusted carrying capacity:

<u>Assumption:</u> That the capacity of a lake to accept trout fry is proportional to the total phosphorus concentration of the water, relative to the undisturbed state.

For Okanagan Lake:

No adjustment is made, since Okanagan Lake was adopted as representative of undisturbed conditions as regards phosphorus.

Therefore basic adjusted carrying capacity = basic carrying capacity

= 40,844,000 fry at 2500/lb.

C. Estimate of secondary carrying capacity:

<u>Assumptions:</u> (1) That competitor species reduce carrying capacity in proportion to their weight in the population relative to rainbow trout.

(2) That predator species increase the apparent carrying capacity in proportion to the weight of trout they consume relative to the trout available. The corollary assumption is made that the impact of predation on rainbow trout is proportional to the numerical contribution by trout to the total fish population.

For Okanagan Lake:

(1) Species in the "rainbow trout competitor niche", with their relative weight from gillnet catches given in brackets, were assumed to be as follows: Rainbow trout (200.31), mountain whitefish (146.26), burbot (420.73), squawfish (839.18), and peamouth chub (286.55); total (1893.03).

Therefore carrying capacity adjusted for competition = $4,322,000 \times (200.31/1893.03) = 4,322,000$ fry at 2500/lb.

(2a) The number of rainbow trout as a proportion of the total fish population is presumed to be indicated by the gillnet catch (Appendix N) as follows:

Numercial proportion of rainbow trout = 166/6,250= 0.02656.

The relative weight of consumption of rainbow trout (2b) annually by predators is presumed to reflect 3x the predator biomass multiplied by the numerical proportion of trout. Species in the "predator complex", with their relative weight from gillnet catches given in brackets, were assumed to be as follows: Rainbow trout (200.31), burbot (420.73), and squawfish (839.18); total (1460.22). Therefore relative weight of rainbow trout lost annually to predation =(3)(1460.22) (0.02656) = 116.35 lb. And additional "capacity" for rainbow fry due to predation =(Carrying capacity adjusted for competition) (proportion of rainbow trout lost annually to predation) =(4,322,000 (116.35)7(116.35 + 200.31) = 1,588,000 fry at 2500/lb. (3) Secondary estimate of carrying capacity for rainbow trout = Capacity for competition + additional capacity due to predation = 4,322,000 + 1,588,000 = 5,910,000 fry at 2500/lb.

D. <u>Estimate of "most probable" carrying capacity:</u>

<u>Assumption:</u> That most probable carrying capacity is the average of the two lowest of the three carrying capacity estimates above.

For Okanagan Lake:

Most probable carrying capacity = (40,844,000 + 5,910,000)/2 = 23,377,000 fry at 2500/lb.

APPENDIX 0 DERIVATION OF PERTINENT RAINBOW TROUT POPULATION PARAMETERS AT MEAN AGE-AT-CATCHING. OKANAGAN MAIN VALLEY LAKES. 1971

	WOOD	KALAMALKA	OKANAGAN	SKAHA	VASEUX	OSOYOOS
Mean size (1b) of trout in angling catch	1.380 ^a	1.380	1.248	0.696	0.696 ^b	1.616
Estimated mean age- (years) at-catching	5 ^a	5	5	3	3 ^b	5
Mean age of effective spawners ^e	4	4	4	3	3	4
Estimated number at mean effective spawning age ^e	119	10,558	32,864	1,551	49	299
Survival, mean effective spawning age to mean age-at- catching	0.75	0.75	0.75	1.00	1.00	0.75
Estimated number at mean age-at-catching	89	7,918	24,648	1,551	49	224

^a Estimated by reference to Kalamalka Lake.

^b Estimated by reference to Skaha Lake.

[°] From mean size in catch, in conjunction with size: age characteristics (Northcote *et al.* MS 1972)

^e From Koshinsky & Willcocks, MS 1973.

APPENDIX P₄

SPORT FISHING EFFORT STATISTICS BY BOAT-FISHERMEN, 1971-72

WOOD LAKE	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov-Mar.	Season
Interviews: Angling-days	1	80	k 4	6	18	8	2	0	119
Anglers per boat	1.00	1.86	1.27	2.00	1.80	1.60	2.00	-	
Hours per angling-day	1.00	3.40	3.28	4.00	1.75	4.50	4.50	-	2.92
Estimated total angling-days ^a	10	352	466	412	893	174	10	0	2317
Estimated angling-hours	10	1197	1528	1648	1563	783	45	-	6774
		<u>A</u>	PPENDIX	P2_					
KALAMALKA LAKE	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov-Mar.	Season
Interviews: Angling-days	24	49	18	44	36	6	5	0	182
Anglers per boat	1.85	1.82	1.20	1.22	1.64	2.00	1.67	-	
Hours per angling-day	3.21	3.17	3.06	2.67	2.32	4.00	4.08	-	2.98
Estimated total angling-days ^a	50	63	734	691	298	212	85	15	214
Estimated angling-hours	161	200	2246	1845	691	848	347	69	640
		A	PPENDIX	P3-	۹ <u>ـــــــ</u>	· · · · · · · · · · · · · · · · · · ·	·		·
NORTH OKANAGAN LAKE	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov-Mar.	Season
Interviews: Angling-days	11	107	99	139	99	36	27	140	65
Anglers per boat	1.83	1.91	2.19	1.70	1.45	2.00	1.80	2.00	
Hours per angling-day	2.25	3.34	3.40	3.43	2.97	4.06	4.29	4.60	3.4
Estimated total angling-days ^a	79	455	6442	6770	6056	3626	577	1082	2508
Estimated angling-hours	178	1520	21903	23221	17986	14722	2475	4977	8698
		A	PPENDIX	<u>P</u> 4_				·	
SOUTH OKANAGAN LAKE	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov-Mar.	Seasor
Interviews: Angling-days	33	88	55	47	133	74	37	109	576
Anglers per boat	1.74	2.00	2.12	1.47	1.93	1.72	2.06	1.70	
Hours per angling-day	3.42	3.58	3.00	2.81	2.90	3.19	3.47	4.73	3.02
Estimated total angling-days ^a	183	1579	12262	8035	7107	2205	1518	475	3336
Estimated angling-hours	626	5653	36786	22578	20610	7034	5267	2247	10080

^a From MacDonald *et al.* MS 1972.

SPORT FISHING EFF	JRI S		ntinu		JAI-F	ISHER.	MEN, _	<u>1971-72</u>	
)11C 111C	ieu /			_		
SKAHA LAKE	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov-Mar.	Season
Interviews: Angling-days	12	135	109	51	76	27	3	0	401
Anglers per boat	1.50	1.99	2.22	1.96	1.81	1.65	1.50	-	
Hours per angling-day	2.00	3.57	3.06	3.69	3.05	4.71	3.75	-	3.44
Estimated total angling-days ^a	25	466	1068	1597	1683	451	181	0	5471
Estimated angling-hours	50	1664	3268	5893	5133	2124	679	0	18811

APPENDIX P₅ SPORT FISHING EFFORT STATISTICS BY BOAT-FISHERMEN, 1971-72

APPENDIX P6

VASEUX LAKE	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov-Mar.	Season
Interviews: Angling-days	0	0	4	6	0	2	0	0	12
Anglers per boat		-	2.00	1.50	-	1.00	-	-	-
Hours per angling-day	-	-	1.25	2.00	-	1.50	-	-	1.43
Estimated total angling-days ^a	0	14	262	56	0	126	0	0	458
Estimated angling-hours	0	28	328	112	0	189	0	0	657

APPENDIX P7

OSOYOOS LAKE	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov-Mar.	Season
Interviews: Angling-days	83	72	16	14	3	40	26	3	257
Anglers per boat	1.43	1.47	1.23	1.27	1.00	1.74	1.73	1.50	
Hours per angling-day	3.61	4.13	3.45	2.91	2.67	2.78	3.33	2.75	3.20
Estimated total angling-days ^a	100	116	300	333	28	294	150	10	1331
Estimated angling-hours	361	479	1035	969	75	817	500	28	4264

^a From MacDonald *et al.* MS 1972.

<u>APPENDIX Q_1 </u>

AVERAGE SIZE OF FISHES TAKEN BY ANGLING. OKANAGAN MAIN VALLEY LAKES AND OKANAGAN RIVER, 1971-72

WOOD LAKE	NUMBER OF SIZE DETERMINATIONS	AVERAGE FORK LENGTH (mm) OF MEASURED FISH	<u>AVERAG</u> (grams)	E WEIGHT (pounds)
Kokanee	43	190.2	72	0.159
Mtn. Whitefish	4	253.8	160	0.353
Squawfish	11	358.2	_	-
Carp	1	516.0	-	-

KALAMALKA LAKE

<u>APPENDIX Q</u>2

Kokanee Lake trout	6 8	200.0 506.4	85 1673	0.187
Squawfish	3	401.7	-	-
Carp	2	400.0	-	-

NORTH OKANAGAN LAKE <u>APPENDIX O₃</u>

Kokanee	873	228.4	124	0.273
Rainbow trout, summer	38	368.6	626	1.380
Rainbow trout, winter	38	435.6	2094	4.616
Mtn. Whitefish	23	248.0	170	0.375
Burbot	1	790.0	4300	9.482
Squawfish	1	270.0	-	-

SOUTH OKANAGAN LAKE <u>APPENDIX Q</u>4

Kokanee Rainbow trout, summer	218 57	223.4 344.7	131 434	0.289
Rainbow trout, winter	27	505.0	2700	5.953
Mtn. Whitefish	392	221.6	118	0.260
Burbot	1	-	3175	7.000
Squawfish	2	375.0	-	-
Carp	2	330.0	-	-

SKAHA LAKE

APPENDIX Q₅

Kokanee	153	275.1	238	0.525
Rainbow trout	59	312.0	316	0.697
Mtn. Whitefish	76	299.1	309	0.681
Squawfish	4	257.5	- `	-
Carp	2	355.0	-	-

APPENDIX Q

AVERAGE SIZE OF FISHES TAKEN BY ANGLING, OKANAGAN MAIN VALLEY LAKES

VASEUX LAKE	NUMBER OF SIZE DETERMINATIONS	AVERAGE FORK LENGTH (mm) OF MEASURED FISH	<u>AVERAG</u> (grams)	E WEIGHT (pounds)
Bass ^a	2	-	313	0.691
Yellow perch	7	150.0	200	0.442
Squawfish	ז	260.0	-	-

AND OKANAGAN RIVER, 1971-72 (continued)

OSOYOOS LAKE	<u>APPEND</u>	<u>IX Q</u> ₇		
Kokanee	277	216.4	119	0.262
Rainbow trout	67	331.4	733	1.616
Largemouth bass	62	354.6	831	1.831
Smallmouth bass	49	196.1	300	0.661
Crappie	25	257.7	264	0.582
Yellow perch	27	114.1	19	0.041
Pumpkinseed	1	100.0	-	-
Squawfish	ן ו	406.4	-	-
Carp	4	450.0	-	-

OKANAGAN RIVER

APPENDIX Q₈

Kokanee	4	257.5	202	0.445
Rainbow trout	14	320.4	350	0.772
Mtn. Whitefish	9	296.1	307	0.677
Bass	4	203.0	130	0.287
Yellow perch	1	8.0	-	-
Squawfish	21	300.5	·	-

^a Includes both largemouth and smallmouth bass.

APPENDIX R

INVENTORY OF PRESENT ANGLING OPPORTUNITIES AND ANGLING UTILIZATION OF

TRIBUTARY STREAMS IN THE OKANAGAN BASIN^a

CREEK	LOCATION OF ANGLING REACH	APPROXIMATE LENGTH OF	ACCESS	PRESENT UTILIZATION,
GREEK		REACH, MILES	VEHICLE, +HIKE(MINS.)	ESTIMATED ANGLING- DAYS PER YEAR
B-X, Upper	Above Swan Lake	4	Car, + 5-10	25
B-X, Lower	Swan Lake to Vernon Creek	3	Car	few ^b
Coldstream	Above Kalamalka Lake	4	Car	300
Deep	Above Armstrong	2	Car, + 5-10	25 ^b
Equesis	Below Square Lake	8	Car, + 5	50
Ellis	Below Ellis Reservoir, to irrigation diversion	8.5	Car, + 10	250 ^b
Inkaneep	Above elevation 1500 feet	2	Car, + 10	few
Kelowna 🦾	Near Kelowna airport	2	Car, + 10	few
Lambly	Below Lambly Lake, to 1.5 miles above mouth	11	Car, + 15	100
Mission a)	Above confluences Belgo and Joe Rich Creeks	4	Pick-up; 15	
b)	Below a), to impassible falls (Mile 11.8)	9	Car, + 15	500
c)	Below b), to 4.8 miles above mouth	7	Car, + 20	
Peachland	Above mouth	10	- , + long	0
Penticton	Below Greyback Reservoir, to irrigation diversion	10	Car, + 30	75 ^b
Powers	Above highway	2	Car, + 15	100
		8	- , + long	0
Shingle a)	Above confluence Shatford Creek	7	Car, + 10	0
b)	Shatford Creek	6	Car, + 10	0
Shorts	Above point 1.5 miles above mouth	12	Jeep, + 15	25
Shuttleworth	Above Kilmer Creek, to elevation 4500 feet	3	Car, + 15	few
Trepanier	Below Lacoma Lake, to 2 miles above mouth	9	Car, + 10	300
Trout a)	Below Headwater Lakes, to Thirsk Reservoir	11	Variable	
b)	Below Thirsk Reservoir, to Mile 17	9	Car, + 10	500
c)	Below c)- to Summerland irrigation diversion	10	Car, + 15	
Vaseux	Below McIntyre Creek, to Highway 97	12	Car, + 15	25
Vernon a)	Below Swalwell Lake, to Ellison Lake ^C	6	Car, + 20	50
b)	Below Kalamalka Lake, to Okanagan Lake	5	Car	few
Whiteman a)	Upper Sections	6	Car, + 10	few
<u>b)</u>	Bouleau Creek		Car, + 10	few
TOTALS 21		193.5		2325

^a Developed from observations and estimates by S. MacDonald (personal communication) and other local B. C. Fish and Wildlife Branch personnel.

APPENDIX S

SPORT-FISHING EFFORT, CATCH, AND HARVEST STATISTICS

	Okanagan River upper ím- proved section ² , 1971-72			Okanagan River unimproved section, 1971–72				Okanagan River lower im- proved section, 1971–72							
	April -June		Sept- Oct.	Nov March	Season	April -June	July- Aug.	Sept- Oct.	Nov March	Season	April -June	July- Aug.	Sept- Oct.	Nov March	Season
Angling-Hours sampled	122	6	35	30	193	4	5	19	3	31	54	0	42	15	111
Hours per angling-day	1.76	1.68	1.43	1.48	1.68	2.00	1.80	2.17	1.00	1.99	1.83	-	2.42	2.63	2.35
Estimated total angling effort															
Angling-days	1806	630	276	439	3151	151+	+	275	48	474+	220+	+	625	270	1115+
Angling-hours	3179	1058	395	650	5282	302+	+	597	48	947+	403+	+	1512	710	2625+
Fish Kept per angling-hour															
Rainbow trout	0.082	0.000	0.057	0.033		0.000	0.000	0.211	0.000						
Mountain Whitefish	0.000	0.000	0.000	0.033							0.019	-	0.168	0.200	
Sockeye salmon						0.000	0.000	0.053	0.000						
Kokanee											0.000	-	0.096	0.000	
Bass						0.000	0.800	0.000	0.000				1		
Yellow perch											0.000	- 1	0.024	0.000	
Bullheads		2									0.148	- 1	0.000	0.000	
Squawfish	0.099	0.000	0.000	0.000		0.000	0.000	0.053	0.000		0.019	- 1	0.215	0.000	
Peamouth chub	0.189	0.000	0.000	0.000		0.000	0.000	0.105	0.000						
Carp	0.008	0.000	0.000	0.000							0.019	-	0.000	0.000	
Suckers	0.017	0.000	0.000	0.000							0.055	-	0.000	0.000	
TOTAL	0.395	0.000	0.057	0.066		0.000	0.800	0.422	0.000		0.260	-	0.503	0.200	
Estimated total harvest, numbers															
Rainbow trout	261	0	23	22	306	0	0	126	0	126					
Mountain Whitefish	0	0	0	22	22						8	-	254	142	404
Sockeye salmon						0	0	32	0	32		1			
Kokanee											0	-	145	0	145
Bass		ļ				o	+	0	0	+					
Other	995	0	<u> </u>	0	995	0	0	94	0	94	97	-	325	0	422
Estimated total harvest, pounds															
Rainbow trout	201	0	18	17	236	0	0	97	0	97					
Mountain Whitefish	0	0	0	15	15						5	-	172	96	273
Sockey e Salmon						0	0	+	0	+					
Kokanee											0	-	65	0	65
Bass						Ó	+	0	0	+					
Yellow Perch											0	-	+	0	+
Other	+	0	+	+	+	0	0	+	0	+	+	-	+	0	+

^a Only that portion between Skaha and Vaseux Lakes

APPENDIX T

	INTERVIEW FORM FOR	OKANAGAN VALLEY FISHERMEN
te:		
ea of Int	erview	(name of lake, etc.)
Where i	s your present home?	
	(7)	
	(Town)	(Province/State)
	kanagan resident, how long years	j have you lived in the Okanagan?
Are you	alone or with a	party on this trip? the following:
(1)	<u>Sex Age Relat</u>	(family group, etc.)
		nermen (i.e. under age)
	Number of non-fishermen _	
(iv)	Activities of non-fisherm	nen
If the	interviewee is a resident	of the Okanagan Basin:
(i)	How many times each year	do you go fishing <u>in the Okanagan Valley</u>
	(on average)tim or longer ? If us	nes. Are these usually one day trips sually longer, how long on average?
	days. How many days do y	you spend fishing <u>in the Okanagan</u> in an
(ii)	average year? c	ays. n average, do you go fishing to places out-
(11)	side the Okanagan?	times. How many days do you spend fishing days.
If the	interviewee is not a resid	lent of the Okanagan:
(i)	Is fishing the main reaso YesNo	on for your trip to the Okanagan Basin? Undecided
(ii)		ying in the Okanagan on this trip? day days do you expect to be fishing? day
(iii)	How many trips do you mak	ke to the Okanagan Valley each year, on aver
	trips. How many of average, do you stay in t	f these are fishing trips? How long, on the Okanagan on these trips? Fishing trips
	days Other tr	rips days.
(iv)	Why did you choose the Ok	kanagan Valley for this trip?
Can you	tell me why you chose thi	is particular site for this fishing trip?
(close	to home, easy access, good	d fishing, etc.) (Why this site rather than
some ot	her?)	
How did	you travel to the fishing	n site?
Car	Jou vruter ov one risking	,
Truck		
	or trailer	
		here from place of residence in Okanagan?
	hours.	

7. <u>Cost of Trip</u>:

For non-residents whose primary purpose of trip is fishing -Total Costs _____

	are	or non-residents for whom fishing is not primary reason for trip, what your additional costs incurred by going fishing?
		tional costs
		or residents - how much do you expect this trip will cost you?
	н	ow much do you spend on equipment, mooring fees, etc. on fishing here he average year?
		all categories, use following cost break-down:
		Gas and Oil
		Accommodation Food
		beverage
		Boat & equipment rental Equipment purchases
8.	In w	hich areas do you usually fish, both in and out of the Okanagan Valley?
	days	he Okanagan? (Be specific here getting name of site and usual number of fished there)
	Days	Trips Site Time of Year Type of Fishing (fly fishing, etc. probe)
9.	to s	his the type of fishing you prefer, or if it was possible, would you like ee more opportunities for certain kinds of fishing in the Okanagan Basin, as in streams and rivers or high altitude lakes?
		sfied at present
	Wou1	d prefer more: High altitude lakes and reservoirs
	(ran	k preference) Lakes with no motor boats Other (specify)
10.	(a)	
		1 2 3
		Would you like to see other species available in the Okanagan?
		Yes No
		If yes, which species, and why:
		<u>Species</u> <u>Reason</u>
		Have you fished for these species elsewhere? Yes No
	(b)	Are there any species of fish you don't want introduced into the Basin?
	()	Yes No
		If yes, which species and why? <u>Species</u> <u>Reason</u>
	(c)	What is your opinion on the introduction of a commercial white-fish fishery into the Okanagan?
	(d)	For how many years have you been fishing? (a) in the Okanagan (b) in all areas
11.	What othe	is your opinion on the quality and availability of boat launching and r facilities at lakes in the Okanagan?

12. Have you any comments on fishing, especially with regards to the Okanagan area, you'd like to make?

Personal Information:

13.	a) b)	SexMF Which age group do you fall in?
		under 2040-4970 or older
		20-2950-59
		30-3960-69
	c)	What is your approximate household income?
		under \$2999 \$7,000-\$9,999 \$3,000-\$4,999 \$10,000-\$14,999 \$5,000-\$6,999 \$15,000 and over
	d)	What level of education did you complete?
		Grade 1-8 some college or university Grade 9 - 12 college or university grad technical training - Explain
	e)	What is your present occupation?

Economic Evaluation

14. For Residents of Okanagan Valley only

We would like to know how much a day's fishing on this ______ is worth to you. One way of estimating this is for you to indicate how much money you would have to be paid to give up happily your day of fishing here. I am going to read a series of hypothetical payments and I want you to tell me to stop when I reach the minimum amount that would give you the same satisfaction you get from a day's fishing:

\$1.00	\$5.00	\$14.00
\$1.50	\$6.00	\$16.00
\$2.00	\$8.00	\$18.00
\$3.00	\$10.00	\$20.00
\$4.00	\$12.00	\$22.00
etc. in \$2.00	increments	· · · · · · · · · · · · · · · · · · ·

\$_____ fee indicated.

15. ALTERNATIVE

We would like to know how much a day's fishing on this ______ is worth to you. How much do you think a day's fishing here is worth to you, not counting your expenses \$

16. For non-residents of Okanagan Valley only

We would like to know how much a day's fishing on this ______ is worth to you. One way of estimating this is for you to indicate how much money you would pay for a day of fishing here if daily charges were in effect. Of course, charges would never be levied, but it is important for us to know how much fishermen would be willing to pay. I am going to read you a series of hypothetical daily fees and I want you to tell me to stop when I reach the maximum fee you would pay for each day of fishing here.

\$0.50 \$2.00 \$5.00	\$1.00 \$2.50 \$5.50	- \$1.50 - \$3.00 - \$6.00
Continue u	pwards in increments of \$1.00)
\$	fee indicated.	

<u>APPENDIX U</u>

RELATIVE CONTRIBUTION OF TRIBUTARY AND SHORE SPAWNING KOKANEE TO INCREASE HARVEST AVAILABILITY IN OKANAGAN AND SKAHA LAKES, WITH 1970 WATER QUALITY CONDITIONS, MODIFIED DISCHARGE REGIMES, AND REPRODUCTIVE HABITAT ENHANCED TO ITS REALISTIC POTENTIAL

	0К.	OKANAGAN		SKAHA		
	KOKANEE	RAINBOW TROUT	KOKANEE	RAINBOW TROUT		
Total Spawners in 1970, number x 1000	8817	32.86	401	1.55		
Shore Spawners (historic discharges) number x 1000	5180	0	0	0		
Total Annual Harvest in 1970, number x 1000	1128.7	17.86	95.78	1.45		
Ratio of Total Escapement to Total Harvest, 1970	7.81:1.00	1.84:1.00	4.19:1.00	1.07:1.00		
Harvest Derived from Shore Spawners (Okan.), or River Spawners (Skaha) under Historic Discharges, number x 1000	663.3	0	95.78	1.45		
Improvement Factor for Mainstem Alternative #36	1.07		1.29			
Harvest Derived from Shore Spawners (Okan.), or River Spawners (Skaha) under Modified Discharges, number x 1000	710.0		123.56	1.45		
Increase of Harvest Due to Modified Mainstem Discharge, number x 1000	46.7	0	27.78	0		
Total Increase of Harvest Due to Modified Discharges and Enhanced Spawning Habitat, number x 1000 1970	1219.0	179.14	113.98	0.90		
1980	2030.7	161.15	79.07	1.23		
2020	1126.5	177.57	98.19	1.07		
Harvest Increase Due to Enhanced Spawning Habitat and Modified Discharges in Tributaries Only (Okanagan), or Okanagan River (Skaha). 1970	1172.3	179.14	86.20	0.90		
1980	1918.4	161.15	51.29	1.23		
2020	1014.2	177.57	70.41	1.07		

<u>APPENDIX V</u>

ANNUAL AND MAXIMUM MONTHLY DISCHARGE DEFICIENCIES IN AN AVERAGE YEAR FOR THE ACCOMMODATION OF FULL FISHERY REQUIREMENTS IN SIX TRIBUTARIES TO OKANAGAN LAKE, 1970, 1980, and 2020 FOR HISTORIC AND MODIFIED DISCHARGE MANAGEMENT

		DEFICIENCY, ACRE-FEET								
STREAM		19	70	19	080	2020*				
		HISTORIC	MODIFIED	HISTORIC	MODIFIED	HISTORIC	MODIFIED			
	Annual deficiency	777	0	937	0	4,683	1,648			
Trout Cr.	Max. monthly deficiency	596	0	596	0	899	899			
	Annual deficiency	377	0	566	0	860	156			
Peachland Cr.	Max. monthly deficiency	197	0	263	0	268	0			
	Annual deficiency	383	0	582	0	1,546	590			
Powers Cr.	Max. monthly deficiency	237	0	237	0	300	235			
	Annual deficiency	340	0	502	0	1,378	617			
Equesis Cr.	Max. monthly deficiency	157	0	160	0	357	357			
Vernon Cr.,	Annual deficiency	96	0	0	0	0	0			
lower	Max. monthly deficiency	96	0	0	0	0	0			
	Annual deficiency	7,695	4,410	6,082	2,160	12,323	8,324			
Mission Cr.	Max. monthly deficiency	2,008	2,304	1,651	792	2,223	2,376			
					TOTAL	20,790	11,335			

High Growth - Average of Dry and Average Year

APPENDIX W

DERIVATION OF NATURAL AND ARTIFICIAL PRODUCTIVITY FACTORS FOR OKANAGAN AND SKAHA LAKES, 1970-2020, INDICATING THE INCREMENTAL HARVESTS OF KOKANEE AND RAINBOW TROUT MADE AVAILABLE PER UNIT AREA OF REPRODUCTIVE HABITAT

KOKANEE	YEAR	OKANAGAN	<u> </u>
Best estimate of spawning escapement, number x 1000	1970	8817	401
"Most probable"estimate of annual sustainable harvest, number x 100	1970	1128.7	95.78
Ratio of escapement to harvest	1970	7.81:1.00	4.19:1.0
Additional kokanee harvest with modified discharges and enhanced habitat (excluding shore-spawners) number x 1000	1970 1980 2020	1172.3 1918.4 1014.0	113.98 79.07 98.19
Sum of (Area x Improvement Factor), sq. yards x 1090	1970 1980 2020	1211.5 1768.9 1041.0	28.31 30.02 22.04
Natural productivity factor, harvest number per sq. yard	1970 1980 2020	0.968 1.085 0.974	4.026 2.634 4.455
Spawning channel productivity factor, harvest number per sq. yard	1970 1980 2020	4.84 5.43 4.87	20.13 13.170 22.275
Incubation channel productivity factor, harvest number per sq. yard	1970 1980 2020	33.90 37.98 34 .10	140.91 92.19 155.93
RAINBOW TROUT			
Best estimate of spawning escapement, number x 1000	1970	32.86	1.55
"Most probable" estimate of annual sustainable harvest, number x 1000	1970	17.86	1.45
Ratio of escapement to harvest	1970	1.84:1.00	1.07:1.0
Additional rainbow trout harvest with modified discharges and enhanced habitat, number x 1000	1970 1980 2020	179.14 161.15 177.57	0.90 1.23 1.07
Sum of (area x Improvement Factor), sq. yards x 1000	1970 1980 2020	1995.5 1731.8 1753.0	44.27 45.79 42.94
Natural productivity factor, harvest number per sq. yard	1970 1980 2020	0.090 0.093 0.101	0.020 0.027 0.025
Spawning channel productivity factor, harvest number per sq. vard	1970 1980 2020	0.90 0.93 1.01	0.20 0.27 9.25
Incubation channel productivity factor, harvest number per sq. yard	1970 1980 2020	6.30 6.51 7.07	1.40 1.89 1.75

CANADA-BRITISH COLUMBIA OKANAGAN BASIN AGREEMENT

TECHNICAL SUPPLEMENT IX(B)

TO THE FINAL REPORT

WATER DEPENDENT WILDLIFE ASSOCIATED WITH WATER MANAGEMENT OF

OKANAGAN LAKE AND THE OKANAGAN RIVER

PUBLISHED BY OFFICE OF THE STUDY DIRECTOR Box 458, PENTICTON, B.C. MARCH, 1974 THE CONSULTATIVE BOARD WISH TO ACKNOWLEDGE THE CONTRIBUTION OF THE FOLLOWING PEOPLE IN THE PREPARATION OF THIS TECHNICAL SUPPLEMENT

COMPILATION

MORLEY E. PINSENT B. C. FISH & WILDLIFE BRANCH DEPARTMENT OF RECREATION AND CONSERVATION VICTORIA, B.C.

CONTRIBUTING AUTHORS A. C. BROOKS, CONSULTING BIOLOGIST DARYL SHERMAN, CONSULTING BIOLOGIST, LAVAL UNIVERSITY TYPIST L.W. JACKSON, STUDY OFFICE

EDITORIAL REVIEW

ΒY

FORBES C. BOYD, FISHERIES 8 MARINE SERVICE ENVIRONMENT CANADA GORDON D. KOSHINSKY, FISHERIES & MARINE SERVICE ENVIRONMENT CANADA

TABLE OF CONTENTS

				PAGE
TABL	E OF OF T	CONTENTS	MENT IX(B) S ND FIGURES	227 231 232 233
CHAP'	TER			
1.	INT	RODUCTI	N	235
	1.1	Genera	l Outlines, Scope of Study	235
	1.2	Data Ba	ase and Approach	235
2.	WATI	ER DEPEND	ENT WILDLIFE POTENTIALS OF OKANAGAN LAKE	237
	2.1	Present	t Water Dependent Wildlife	237
	2.2	Waterfo	owl Nesting	237
	2.3	Winter	ing and Migrating Waterfowl	238
	2.4	Aquatio	c Mammals	238
	2.5 2.5.		Affecting Wildlife Potential of Okanagan Lake level fluctuations	238 238
	2.6	Human A	Agencies and Exploitation	240
	2.7	Carp		240
3.	WATI	ER DEPENDI	ENT WILDLIFE POTENTIALS OF THE OKANAGAN RIVER	241
		-	an Falls to Oliver ux Lake wildlife	241 241
	3.2	Oliver	to Osoyoos Lake	242
		3.2.1	Classification of Okanagan River Oxbo	ws south
			of Oliver	241
		3.2.2	Present water dependent wildlife	244
		3.2.3	Effects of flow on water dependent wi in Okanagan River	ldlife 245
4.	DIS	CUSSION	AND CONCLUSIONS	246
REFE	RENCE	S		248
APPE	NDIX		aterfowl Species Observed in the North Arm rea of Okanagan Lake from Records of the late	249 e

Allan Brooks, and A.C. Brooks, 1907-1971.

LIST OF TABLES AND FIGURES

TABLE NUMBER

TITLE

PAGE

3.1	A Checklist of Water Dependent Wildlife in the Vaseux	242
	Lake area	
3.2	Species List, Location and General Abundance of Water	245

Dependent Wildlife in Okanagan River between Oliver and Osoyoos Lake, 1971-72.

FIGURE

NUMBER

3.1 A Sketch Map of the Okanagan River channel and oxbows 243 south of Oliver

SUMMARY

- 1. Okanagan Lake, its shoreline, the Okanagan River and its immediate surroundings support a diverse water-based wildlife fauna. The number of species found in these areas are comparable to, if not greater than the number found in similar ecological settings in British Columbia.
- 2. Okanagan Lake has a low wildlife production capacity. Water dependent birds and mammals have decreased in abundance since the turn of the century in spite of a slight trend to increased eutrophication in the lake. The decrease is thought to be due to shoreline alteration, the introduction of carp, and water level manipulation.
- 3. Substantial wildlife production in Okanagan Lake is limited to the north arm of the lake and a limited number of small, shallow protected bays and creek mouths.
- 4. Within the Okanagan River complex, only Vaseux Lake and the marshes at the north end of Osoyoos Lake are noteworthy water dependent wildlife producers. The river system and its associated oxbows are unproductive under present water flow regimes,
- 5. Alteration of Okanagan Lake water levels below the present minimum level would have a severe effect on water dependent wildlife. This effect would be temporary provided normal water levels were resumed.
- 6. Wildlife production in the oxbows of the Okanagan River could be greatly increased if three of the oxbows were "charged" permanently and if flows in excess of 250 cfs were maintained. Flows below 250 cfs cause a drying of several potentially productive oxbows and a deterioration of wildlife habitat.
- 7. Since water dependent wildlife tends to thrive in eutrophic situations, any enrichment of the shoreline areas of Okanagan Lake would probably be of some benefit to these wildlife species.
- 8. Vaseux Lake, which produces from 150 to 200 Canada geese annually, is a key nesting site in the Okanagan Basin. To avoid nest flooding and loss of young, the mid-March water level of Vaseux Lake should not be exceeded by more than two feet during the incubation and nesting stages.

CHAPTER 1

Introduction

1.1 GENERAL OUTLINE, SCOPE OF STUDY

Wildlife, as fisheries, has some real value as an attraction for tourists, but it is perhaps most valuable to the Okanagan as an active (hunting) and passive (non-consumptive bird watching, etc.) recreational resource for Okanagan Basin residents. The public has come to regard wildlife as an indication of the ecological well being of a particular area. Its role as such an indicator is also of concern to Okanagan residents.

While all wildlife requires some water to a greater or lesser degree, many species require it directly for consumption and indirectly for the growth of plants upon which they depend for food or shelter. Shore birds, waterfowl and aquatic mammals, however, live in an intimate association with water bodies. It was determined that these water dependent wildlife species would be most markedly affected by water management plans for the Okanagan Basin, thus they were the wildlife groups examined,

The headwater lakes and tributary streams in the Okanagan Basin support only very limited numbers of water dependent wildlife. Okanagan Lake and the Okanagan River are the only areas of the basin with any notable water dependent wildlife potential, thus study was concentrated in these areas. Water quality, lake level controls, river flow, adjacent land use were all examined with a view to effect on wildlife populations, once a subjective overview of water dependent wildlife populations was completed. The objectives were:

1. to determine the effects of short and long-term fluctuations of Okanagan

Lake levels upon resident and migrant bird and mammal populations found along

the lake shoreline.

2. to determine the effects of specified minimum flows in the Okanagan River

south of Okanagan Falls, upon resident and migrant bird and mammal populations.

 to determine the impacts of specified minimum flows in Okanagan River upon bird and mammal populations dependent upon the oxbows between Oliver and Osoyoos Lake.

1.2 DATA BASE AND APPROACH

Only a very limited and subjective survey of water dependent wildlife was attempted. Lack of time. funds and personnel were main limitations. A.C. Brooks was commissioned briefly, as consultant to the Study, to investigate wildlife problems associated with water management of the Okanagan Lake and River. He further evaluated the mainstem water quantity alternatives and their effect on wildlife. His reports are the primary data base for the following comments on water dependent wildlife. Wildlife and recreation in the Trout Creek basin were examined. This study did not however, provide a sufficiently adequate analysis of wildlife values to warrant extrapolation to other tributaries. The essential gleaning from these data was that water dependent wildlife do not make a significant contribution to recreation in the headwater areas of the Basin.

Two distinct areas were examined during the Study:

- 1. Okanagan Lake
- 2. Okanagan River

Wildlife populations are not necessarily distinct within the two areas and it is suspected that in particular, migrant waterfowl make well integrated use of Okanagan Lake, the oxbows of the river and the north end of Osoyoos Lake. For purposes of discussion however, the areas are dealt with separately. The marshes of the north end of Osoyoos Lake, and all of Vaseux Lake are discussed within the framework of the Okanagan River. Vaseux Lake is in effect a widening and shallowing of the river, while the marshes at the north end of Osoyoos Lake are essentially a part of the mouth of the river exhibiting almost delta-like characteristics.

CHAPTER 2

Water Dependent Wildlife Potentials of Okanagan Lake

2.1 PRESENT WATER DEPENDENT WILDLIFE

Due to its oligotrophic character and rocky littoral shelf, Okanagan Lake generally has a poor potential for wildlife production. The number of birds using the lake as a whole is low, particularly during the nesting season. Areas of the lake which have a sloping clay or organic mud bottom which would be expected to be good waterfowl habitat, are often limited by lack of shelter, a requirement for most waterfowl nesting.

The Canada Land Inventory waterfowl evaluation, classifies the deeper parts of the lake (most of its surface area) as having severe limitations for waterfowl production. It also indicates the margins and north arm of the lake as areas with little or no breeding potential, but with a high value for wintering and migrating waterfowl. Presently, the north arm of Okanagan Lake, the mouth of Deep Creek and a few limited areas of shoreline are the principal areas of waterfowl concern.

Okanagan Lake in its entirety, but particularly the shallower waters near the shore, is an important stop for migrating waterfowl, a number of species of which winter here as well. Of these, Canada geese, coots, loons, grebes, golden-eyes and other ducks are important. Lass frequent numerically, but of high aesthetic and biological importance are bald eagles and the occasional osprey. Limited numbers of beaver and muskrat use the softer banks of the creek mouths and the north arm area as homesites.

2.2 WATERFOWL NESTING

Naturalist records from about the turn of the century to 1945 indicate that the north arm of Okanagan Lake, which is the best waterfowl habitat in the lake, supported only a very limited number of nesting birds. Gadwall, Barrow's golden-eye, mallard, redhead, coots and loons were the principal nesting waterfowl in 1909. Canada geese first nested in 1926 in the north arm. Records indicated a steady decline in nesting waterfowl in the north arm to 1945, with the exception of Canada geese, numbers of which increased slightly.

Present data indicate that the situation with regard to nesting waterfowl is much as it was in the 1940's. Canada goose numbers however, have increased about sixteen-fold (seven to 130) since 1942. A check list of waterfowl species observed in the north arm is presented in Appendix A.

2.3 WINTERING AND MIGRATING WATERFOWL

The principal value of Okanagan Lake to water-dependent wildlife, is as a site for migrating and wintering waterfowl. The north end of Okanagan Lake plays host to practically every species of migrant waterfowl in western Canada. Thousands of ducks annually spend time in the fall and winter on Okanagan Lake.

Some waterfowl may stay on the lake for a considerable time during fall and spring. Some species, coot in particular, winter on the lake while others, such as pintail and snow geese are transients.

Indications are that the number of semi-resident diving ducks which may spend several weeks on the lake in the fall and spring have decreased in the last sixty years. Observations in 1971 indicate still fewer waterfowl are spending time on the lake. The birds tend to use very limited areas such as the dense pond weed growth areas near the mouth of Deep Creek, the outlet of Vernon Creek, the growths of pond weed near Kelowna and the Gartrell Point area near Summerland.

Canada geese are the obvious exception to decreasing waterfowl numbers on Okanagan Lake. They are first recorded as nesting on the lake in 1926. It is suggested that up to 40 pairs are presently nesting on the lake and about 200 use the lake for some period during spring and fall migrations. The development of lawns and the growing of grass and alfalfa in the orchards has increased the attractiveness of the area for geese.

2.4 AQUATIC MAMMALS

Muskrats are the only aquatic mammals of any significance in Okanagan Lake. Their numbers appear to have decreased in recent years, mainly as a result of habitat alteration due to shoreline development. The only concentration of muskrats noted in 1971 was in the marshy areas near the mouth of Deep Creek.

2.5 FACTORS AFFECTING WILDLIFE POTENTIAL OF OKANAGAN LAKE

2.5.1 Lake Level Fluctuations

Outlined below are some of the effects that varying lake levels may have on wildlife and wildlife habitat. Short term conditions are considered to be a period of less than one year. Long term conditions are deemed to be for one year or more.

(a) <u>Short Duration - Low Water</u>

1. Low, low water: less than 1117.8'

from December through February - during a severe winter, the exposed shoreline would be frozen. Ice and the action of thaws would result in much of the emergent vegetation along the shore being damaged, resulting in a sparse growth of bulrushes during the following season. An exposed shoreline would leave, in a mild winter, little cover for waterfowl and muskrat.

2. From May through July: less than 1117.8'

water's edge would be below the zone of bulrushes in many places. This would mean limited shore cover for waterbirds and limited nesting habitat for birds such as grebe and loon that have floating nests. Broods of young ducks, owing to lack of cover, would be exposed to a higher predation risk.

3. From August to November: low water less than 1117.8'

exposed shoreline - an absence of cover; natural weed beds would be exposed, become dried up and would therefore result in limited food supplies for waterfowl. Lake shore marshes would dry up and birds and mammals dependent upon these, affected.

4. From May through February; moderately low water

between 1117.8' and 1119.8' - similar conditions would result as noted above in 1, but the affects would not be as drastic.

5. From May through July; moderately low high water

between 1118.8' and 1121.8'would still leave much lakeshore marsh lands in which cattails and bulrushes predominate, high and dry and thus habitat requirements for a number of species of birds and for muskrat would be affected.

6. During March and April; low, low water, less than 1117.8'

similar effects on wildlife and vegetation as expressed in 1 and 3 above, but not as severe.

It is pointed out that low water levels between 1118.8' and 1121.8' have no appreciable effect on migrating waterfowl. Diving ducks are bottom feeders and will range into deeper waters down to 5 meters in depth if food sources are available at these depths. Surface feeding ducks are able to procure their food from emergent aquatic vegetation and in shallows; geese which principally feed on grass, and fish-eating species (grebes, loons, mergansers) would not be markedly affected.

(b) <u>Short Duration - High Water</u>

High water levels in the lake are generally beneficial to wildlife. Marshes are flooded and flooding of fields provide ample cover and food for wildlife. Water levels exceeding 1123.9' for more than two consecutive years would kill much of the brush and young tree growth that have become established on the shores since the inception of the flood control scheme in 1955.

A rapidly rising lake level during the spring and early summer months can flood the nests of some waterfowl close to the water's edge and the nests of loons and grebes which float. Canada geese, which may nest below mean high water mark however, are not usually hatched by the second or third week in May, well before the period of rapid rise in take level.

(c) Long Duration - Low Water

Winter and spring lows of less than 1117.8' for three or more years would bring about considerable changes in the shoreline of the lake, particularly in those localities where there is a gently sloping shoreline. Bulrushes would diminish in extent and much of the nesting habitat of the bird life dependent upon this would be lost. If normal winter and spring low water levels were to return after three years, the shoreline would resume its previous character. With this recovery would come the return of the wildlife dependent upon it.

2.6 <u>HUMAN AGENCIES AND EXPLOITATION</u>

Alteration of the shoreline of Okanagan Lake by various forms of development, coupled with flood control programs are affecting the potential of the lake for water dependent wildlife.

The advent of water level control, immediate shoreline alteration, undergrowth removal, emergent aquatic plant removal, construction of docks and boathouses, and alteration for extensive recreational use has resulted in the removal of wildlife habitat. The disappearance of water dependent wildlife has followed.

In the area adjacent to the north arm, clearing for agriculture has resulted in the removal of clumps of brush which provided nesting cover for ducks and perching birds.

If shoreline alteration and development continue, or is intensified in the future, it is predicted that water dependent wildlife on Okanagan Lake will continue to decline due to this generally negative influence on wildlife potential.

2.7 <u>CARP</u>

Carp became established in Okanagan Lake about 1917. By 1929, this fish was deemed responsible for the eradication of duckweed in Okanagan Landing Arm. The lake bottom in an area where *potamogeton* was abundant was observed by the lake Allan Brooks as "quite clean, and covered with round holes where carp have gobbled up the roots". McCrimmon (1968) notes that removal of carp from confined areas brought about a replenishment of aquatic growth, and at the same time a marked clearing of water thus further stimulating photosynthetic activity.

It is suggested that carp populations are presently exhibiting a negative influence on waterfowl populations in Okanagan Lake. An increase in carp numbers will certainly cause a further decline in waterfowl numbers in the future. Management activities and shoreline alteration activities should be carried out with a view to at least limiting carp habitat.

CHAPTER 3 Water Dependent Wildlife Potentials of the Okanagan River

As pointed out earlier, the Okanagan River was taken to include Vaseux Lake and the marshes at the north end of Osoyoos Lake where the river enters. The river was subdivided into two sections, the portion from Okanagan Falls to Oliver (including Vaseux Lake) and the portion from Oliver to Osoyoos Lake (including the marshes at the north end of Osoyoos Lake and the oxbows adjadent to the river).

3.1 OKANAGAN FALLS TO OLIVER

This section of the Okanagan River proper is of very little value to water dependent wildlife. The oxbows in this portion of the river have been subjected to landfills and other landuse activities which make them of little or no use to waterfowl. The river banks between station 600 and the McIntyre dam harbor a variety of bird and mammal species which are not affected by river fluctuations.

Tugulnuit Lake is used to a limited extent by migrating waterfowl, and a few pairs of geese breed there each year.

Vaseux Lake is the key area for water dependent wildlife in this portion of the river system. It is essentially a wide, shallow portion of the Okanagan River, since a complete water exchange takes only a few days (see Technical Supplement V).

3.1.1 <u>Vaseux Lake Wildlife</u>

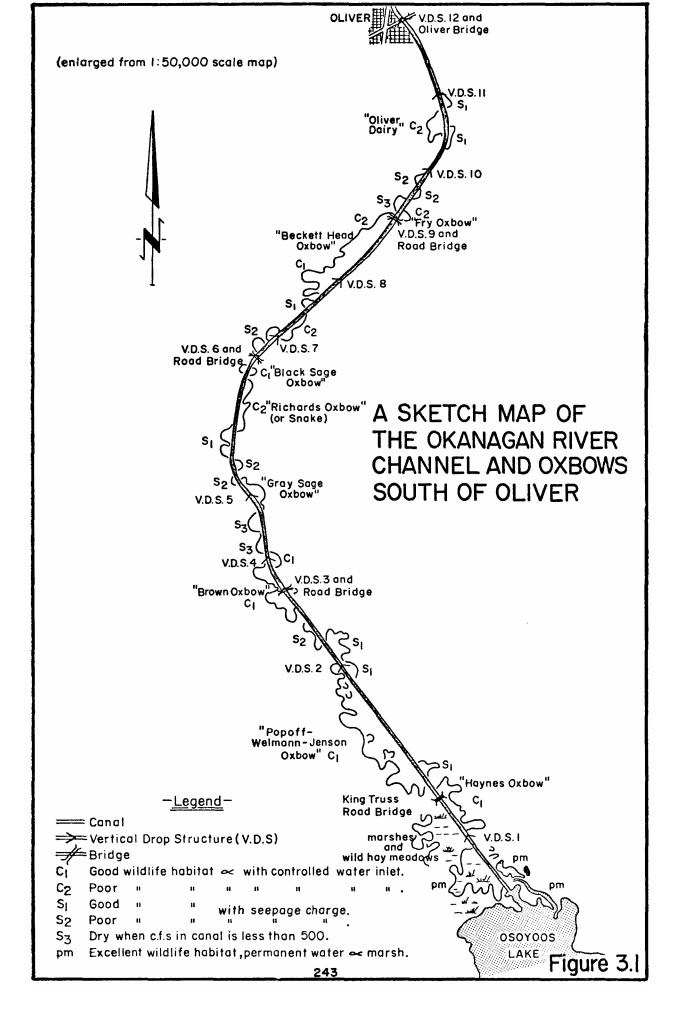
In 1923, Vaseux Lake and its shore were made a Federal Migratory Bird Sanctuary, primarily to protect a wintering flock of rare trumpeter swans. While a few swans and other waterfowl still winter there, it is noted as a nesting and rearing area for large numbers of Canada geese (Harris, 1964). Each year from 150 to 200 Canada geese are raised on the lake.

In addition to its principal use as a Canada goose rearing area, many other water dependent wildlife species use the Vaseux Lake area. Table 3.1 is a checklist of such species inhabiting Vaseux Lake.

While Vaseux Lake is very shallow and quite productive, its productive capacity due to rapid water exchange, is in large part a function of the water quality of the Okanagan River. Since water dependent wildlife prefer eutrophic conditions, the artificial enrichment of Okanagan River waters would be of benefit to Vaseux Lake wildlife.

TABLE 3.1

<u>A CHECKLIST OF WATER DEPENDENT</u> WILDLIFE IN THE VASEUX LAKE AREA


Blue winged teal	Anas discors
Bufflehead	Bucephula albeola
Canada goose	Branta canadensis
Canvasback	Aythya valisineria
Goldeneye	Bucephala clangula
Coot	Fulica americana
Dipper	Cinclus mexicanus
Green winged teal	Anas carolinensis
Harlequin	Histronicus histronicus
Lesser scaup	Aythya affinis
Long-billed curlew	Numenius americanus
Mallard	Anas platyrhynchos
Merganser	Mergus spp.
Pintail	Anas acuta
Redhead	Aythya americana
Trumpeter swan	Olor buccinator
Whistling swan	Olor columbianus
Widgeon	Mareca americana
Painted turtle	Chrysemys bellii
Muskrat	Ondatra zibethica
Beaver	Castor canadensis

About 25% of the geese nesting at Vaseux Lake build nests in elevated sites (i.e. old eagle and osprey nests, on top of pilings, etc). Water level alterations will have little effect on nesting success of this group. The remaining 75% nest on Hatfield Island in Vaseux Lake in March. A water level increase of greater than 2 feet during the incubation period and prior to the young leaving the nest would cause extended gosling mortality.

Changing water levels will have an effect on growth of aquatic plants, however. Prolonged dry periods will cause exposure of roots and dessication with an overall loss of productive capacity. A more detailed examination of effect of lake level changes is presented in Section 2.2.1. These statements are roughly comparable to effects to be expected in Okanagan Lake.

3.2 OLIVER TO OSOYOOS LAKE

The principal areas of wildlife concern in the Oliver to Osoyoos section of the river are some of the oxbows and the marsh areas at the north end of Osoyoos Lake (Figure 3.1). The meanders or "oxbows" on either side of the

present river are the original course of the river prior to its channelization as part of the Okanagan Flood Control program. They could be classified as ponds, marshes, slow running streams, etc., as well as oxbows but for simplicity are all referred to as oxbows in the following discussion.

The oxbows south of Oliver have been categorized according to their potential as water dependent wildlife habitat, (Figure 3.1).

3.2.1 Classification of Okanagan River Oxbows South of Oliver

Oxbows with water levels which are controlled for purposes of irrigation are referred to as "charged" oxbows. These are divided into C_1 " and C_2 " oxbows. The latter are favorable habitat for wildlife, the former due to a lack of brush and reed cover and their generally rocky bottoms, present poor habitat for water dependent wildlife.

It is noted that all the "C" oxbows north of Vertical Drop Structure No. 6 (VDS6) with the exception of the lower portion of the Beckett Head oxbow, (Figure 3.1), are classified as "C?", while those south of VDS6 are " C_1 ". (These mostly have sand or silt substrates).

"S" are seepage oxbows with water levels dependent upon seepage from the river channel. As in the case of the charged oxbows, these are classified on the basis of plant cover around them, their substrate, and aquatic growth in them. Beside "S₁", and "S₂", there is a third category, "S₃" which represents seepage oxbows which become dry when the flow in the river channel drops below 500 cfs. S₁ oxbows retain water when river flows drop as low as 250 cfs.

"PM" are permanent ponds and marshes at the extreme north end of Osoyoos Lake, north to the Kingtruss Bridge.

3.2.2 Present Water Dependent Wildlife

Present (1971) species of water dependent wildlife and approximate abundance and location are summarized in Table 3.2. As is indicated, wildlife is generally limited in the area with the exception of the marsh area between Kingtruss Bridge and Osoyoos Lake. The permanent marshes provide some degree of stable habitat and are thus likely to be more suitable habitat for semi-aquatic wildlife.

From field observation it is suggested that the lack of waterfowl on the oxbows is probably attributable to a number of factors including:

- 1. The oxbows north of VDS 6 are vestiges of a fast flowing river, thus they have a gravel or sandy substrate which is unsuitable for aquatic vegetation
- 2. Growth of aquatic vegetation in oxbows with suitable substrate is checked by fluctuating water levels which often fail to follow a seasonal pattern and are more dependent on irrigation demands.

3. Habitat destruction and alteration along banks of oxbows.

4. Using oxbows as dumps and landfill areas.

3.2.3 Effects of Flow on Water Dependent Wildlife in the Okanagan River

Maximum high water levels in the Okanagan River usually occur in May or June, but occasionally as early as March. Maximum flows from 1959 to 1969 varied from 350 to 1970 cfs. It is estimated a flow in excess of 1500 cfs would fill essentially all oxbows, even those labelled S_2 (Figure 3.1). Low maximum, i.e. 350 cfs. would severely limit waterfowl breeding in the oxbows. It was observed that flows of 250 cfs maintained water levels in S_1 oxbows. This is estimated to be about a minimum level for maintaining adequate wildlife production in S_1 oxbows. Flows between 500 and 600 cfs. also maintain adequate levels in S_2 oxbows.

Charged oxbows present quite a different situation from seepage oxbows since water levels are maintained for the exclusive benefit of persons having irrigation intakes within the oxbow. Water levels which are generally beneficial to wildlife occur during the irrigation season. In the fall these oxbows cease to be charged and water levels almost immediately drop 18-24 inches, resulting in many of the charged oxbows becoming a series of shallow puddles. submerged and emergent aquatic plants dessicate, openings to muskrat dens are exposed and the oxbows cease to be suitable wildlife habitat. As each charged oxbow is managed on quite an individual basis, being only generally full during the irrigation season, no general conclusions could be reached correlating their suitability to wildlife with river flows.

	SPECIES		GENERAL	ABUNDAN	CE AND LOC	ATION	
Common Name	Scientific Name	Rare	Limited	Common	Cc	omment	5
Canada geese	Branta canadensis		•		Marshes, Lake	north	Osoyoos
Red necked grebe	Podiceps grisegene		•		11	u	F3
Horned grebe	Podiceps auritus		0		в	u	u
Western grebe	Aechmorphus occidentalis		•		ŧI	11	
Mallard	Anas platyrynchos			•	Marshes, Lake and truss Bri	north	
Redhead	Aythya americana		•		Marshes, Lake	north	Osoyoos
Wood duck	Aix spansa	۲			u	u	H
Hooded merganser	Lophodytes cucullatus	8			North of Bridge	Kingt	russ
Bluewinged teal	Anas discors	Ø			51	4	
Greenwinged teal	Anas carolinasis	•			11	и	
Muskrat	Ondatra zibethica			٠	Popoff-Je Osoyoos L		oxbow, No.
Beaver	Castor canadensis		•		Gray Sage Beckett-H		

TABLE 3.2

SPECIES LIST, LOCATION AND GENERAL ABUNDANCE OF WATER DEPENDENT WILDLIFE IN OKANAGAN RIVER BETWEEN OLIVER AND OSOYOOS LAKE, 1971-72^{*}

^{*}Data from A.C. Brooks. MS 1973

CHAPTER 4

Discussion and Conclusions

In terms of wildlife productivity, Okanagan Lake is low. However, the lake is an important stop for many migrating and wintering waterfowl. It has a very limited potential for waterfowl breeding, due primarily to its lack of sheltered, eutrophic, gently sloping bays and coves.

Numbers of water dependent wildlife have decreased during the past sixty years due to a number of factors including human intrusions and shoreline development, introduction of carp and the inception of flood control measures. The exception to this general decline are Canada geese, whose numbers have increased over the past half century. Land use adjacent to Okanagan Lake has exerted considerable influence over water dependent wildlife abundance.

Since water dependent wildlife species thrive in sheltered eutrophic conditions, any advancement, induced or natural, of eutrophication would certainly benefit wildlife. The more recent growths of aquatic plants adjacent to the City of Kelowna and the use of that area by migrating waterfowl illustrates the point.

Land use adjacent to Okanagan Lake will intensify in the future, likely to the detriment of wildlife. Intensive farming practices, development of private recreational properties and public recreation facilities often remove wildlife habitat.

Alteration of water levels, if of short duration, will have little effect on wildlife. Low water conditions for extended periods of time cause dessication of the roots of emergent and semi-emergent aquatic plants contributing to their demise. This effectively removes the area from wildlife use.

The Okanagan River itself has little potential for water dependent wildlife. Some of the larger oxbows, Vaseux Lake and the permanent marshes between Kingtruss Bridge and Osoyoos Lake, all of which depend on the River for maintenance of water level, do support very considerable wildlife populations.

The Gray Sage, Brown and Popoff-Welmann-Jensen oxbows (Figure 3.1), are potentially rich wildlife producers. These are all "charged" oxbows, in that their water levels are maintained during the irrigation season since irrigation intakes are within the oxbows. A relatively stable water level is essential for good wildlife production. The "charged" oxbows have water levels maintained only during the irrigation season. During the non-irrigating months, water levels drop too far to maintain good wildlife production. It is proposed that water levels in these three oxbows be maintained permanently to conserve and enhance wildlife habitat. With this stability, further habitat improvement measures should be considered.

The permanent marshes between Kingtruss Bridge and the north end of Osoyoos Lake present essentially delta conditions which tend to be highly productive wildlife areas. The marshes are maintained by Okanagan River flows and Osoyoos Lake levels. A prolonged lowering of water levels would hasten development of brush, trees and riparian habitat in the marshes which would be detrimental to particularly waterfowl and muskrats. It is suggested that present minimum Osoyoos Lake levels and minimum Okanagan River flows be retained to ensure the wildlife productivity of this area.

Vaseux Lake, which can be considered functionally as a widening and shallowing of the Okanagan River, is the major nesting and rearing area for Canada geese in the Okanagan Basin. Any enrichment of Okanagan River waters will have a favorable effect on the waterfowl production of the lake. Alteration of lake levels within a normal range is not expected to have a marked effect on nesting success of Canada geese, if levels in mid-March are not exceeded by two feet during the incubation and nesting period.

In conclusion, Okanagan Lake and River have a limited number of areas of wildlife potential, notably the north arm, Vaseux Lake, some oxbows and the permanent marshes north of Osoyoos Lake. The system is used by waterfowl primarily for wintering and migrating. Canada geese nest in Vaseux Lake and the north arm of Okanagan Lake in increasing numbers, a trend that will likely continue. Land use adjacent to the lake and river, extended low lake levels and flows below 250 cfs., will place further limitations on the generally low water dependent wildlife productivity of the area.

REFERENCES

Manuscript reports resulting from Canada-British Columbia Okanagan Basin Agreement studies which have been used extensively in the compilation of Technical Supplement IX, Part B

- 1. Brooks, A.C. 1971. Task 235 (i) Evaluation: Wildlife 7 pp.
- 2. Brooks, A.C. 1971. Task 102 (i) The Trout Creek Basin Study;

Wildlife and Recreation

3. Brooks, A.C. 1973. Task 160. Wildlife Problems Associated with Water Management of the

Okanagan River, 38 pp.

Okanagan Lakes and

LITERATURE CITED

Harris, R.D. 1964. Natural History Notes, Vaseux Lake Region, Queen's Printer, Ottawa, 7 pp.

McCrimmon, H.R. 1968. Carp in Canada. Fisheries Research Board Bulletin 165, Ottawa, 93 pp.

APPENDIX A

WATERFOWL SPECIES OBSERVED IN THE NORTH ARM AREA OF OKANAGAN LAKE FROM RECORDS OF THE LAKE ALLAN BROOKS AND A.C. BROOKS, 1907-1971.

SPECIES	SCIENTIFIC NAME	NESTING	WINTERING AND/OR MIGRATING
Gadwall	Anas strepera		_
Barrow's goldeneye	Bucephala islandiea	ATA	
Mallard	Anas platyrhynchos		THE T
Coot	Fulica americana	LAAM	TATA
Loon	Gavia immer	4-1	
Redhead	Aythya americana	×	
Canada goose	Branta canadensis	(Increasing)	(Increasing)
Rednecked grebe	Podiceps grisegena	4	
Western grebe	Aechmorphus occidentalis	1	
Hooded merganser	Lophodytes cucullatus	Å	
American merganser	Mergus merganser		
Shoveller	Spatula clypeata	1	
Curlew	Numenius sp.		
American widgeon	Mareca americana	AT	
Wood duck	Aix sponsa		
Canvasback	Aythya valisineria		
Buffleheads	Bucephala albeala		4
Pintail	Anas acuta		
Teal	Anas carolinensis		11-11