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Abstract Scientists and practitioners agree that integrated water resource management is
necessary, with an increasing need for research at the regional scale (103 to 105 km2). At this
scale interactions between environmental and human systems are fully developed and global
change is linked to local actions. The groundwater-surface water interaction (GW-SW) is of
particular interest. Herein we review the scientific journal literature and examine GW-SW at
the regional scale. We briefly review all existing literature on GW-SW, then summarise its
characteristics at different scales and identify specific challenges of the regional scale. We
explore whether GW-SW should be treated differently at regional and local scales. Regional
GW-SW is rarely examined in experimental field studies, which almost exclusively cover
small areas. However, GW-SW is often integral to large scale coupled models. Thus, we
collate information about existing models and their regional applications. Fully coupled,
physics-based models have great potential to meet the technical challenges. However, limited
data availability hampers the application of complex models at the regional scale and loosely
coupled schemes are more widely applied. Many integrated modelling concepts have been
published, but none have been applied in a wide range of settings. Thus, it is impossible to
compare the performance of different approaches. Comparative analyses of existing regional
scale integrated models in the context of different data availability and geographic conditions
are needed. Unfortunately, peer-reviewed journal literature no longer provides a representative
picture of the subject as models are becoming Btoo big to be published^ or too pragmatic.
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1 Introduction

This paper reviews the current developments in understanding and modelling groundwater-
surface water interactions at the regional scale. The focus is on practical aspects of this topic,
i.e. the degree to which currently available scientific knowledge can provide and support
solutions to actual practical problems in the field of integrated modelling of groundwater-
surface water interaction at the regional scale. The term Bregional scale^ is used here to
describe areas of approximately 103 to 105 km2.

1.1 Coverage of Groundwater-surface Water Interaction at the Regional Scale
in the Literature

Groundwater-surface water interaction (hereafter abbreviated to GW-SW) has received a lot of
attention in recent decades. Many individual studies and several summary articles have been
published, and the number of related publications is steadily growing. In his state of the science,
Sophocleous (2002)1 summarises the fundamental concepts and implications of GW-SW from
a predominantly hydraulic-hydrogeological viewpoint. Winter and Rosenberry (1995) and
Winter (1999) take a similar approach, focusing particularly on the hydraulic conditions related
to various types of surface waters. Brunke and Gonser (1997) and Hayashi and Rosenberry
(2002) provide a comprehensive overview with special emphasis on the ecology of surface
waters. Rosenberry and LaBaugh (2008) as well as Kalbus et al. (2006) give overviews of field
techniques for estimating fluxes between groundwater and surface water at different scales.
Anibas et al. (2012) describe specific types of interaction in wetlands and regional modelling
approaches over large wetlands, e.g. by Bauer et al. (2006). Werner et al. (2013) focus on the
interaction between groundwater and sea water. There is much focus on the interaction between
groundwater and rivers and streams, while interaction with lakes and other non-flowing water
bodies is underrepresented (see, e.g. Elsawwaf et al. 2014; Tweed et al. 2009). Dahl et al. (2007)
review different classification systems of GW-SW in a process-oriented manner and propose a
new typology for these interactions, which can be used for a better comparison of different
settings or sites. Levy and Xu (2012) review and compare methods to describe GW-SW at
different scales and list exemplary applications in South Africa.

Research efforts relating to GW-SW have recently focused on the hyporheic zone (near-
channel and in-channel processes, e.g. Allen et al. 2010; Banzhaf et al. 2013; Boulton et al.
1998; Krause et al. 2009). Much less research has been carried out at the local or flood plain
scale (Langhoff et al. 2006, see also section 2.1.2). When looking at larger scales, process-
based investigations become scarce; only a few studies, e.g. studies of the Murray-Darling
Basin Sustainable Yields Project by CSIRO (2008) and Lamontagne et al. (2014), address the
regional scale.

Looking at the literature in general, it seems that the governing hydraulic processes of GW-
SW are quite well understood and knowledge of how to address specific conditions is rapidly
increasing. This facilitates a conceptualisation of GW-SWat smaller scales in a large variety of
settings. However, many questions still remain unanswered when dealing with heterogeneities
in the aquifer and surface water channels (e.g. Fleckenstein et al. 2006). The combination of

1 Sophocleous(2002) This article was recently criticised for plagiarism/self- plagiarism (see http://news.ku.edu/
2013/12/11/public-censure). The article’s content, however, is valuable regardless. See also comment at http://
link.springer.com/article/10.1007/s10040-014-1215-0
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local scale heterogeneity of hydrological/hydrogeological properties with the large number of
different catchment types (McDonnell and Woods 2004; Wagener et al. 2007) creates a wide
variety of possible settings. This makes it difficult to transfer knowledge obtained at the point
scale to the local and catchment scale.

Little material has been published that explicitly addresses the topic of GW-SW at the
regional scale based on field experiments and observations or by attempting to derive concepts
from fundamental, theoretical considerations (as one of the few examples see Akiyama et al.
2007). The relatively large number of publications on regional-scaled integrated model
applications of GW-SW (see section 3), is usually more concerned with model specific issues
than with a fundamental analysis of the GW-SW problem.

1.2 Objectives and Scope of this Review

The previous section shows that GW-SW, as a subject in general, has received a lot of attention in
recent decades. The decision to present this review paper in addition to the existing literature is
motivated by the general consensus that there is a great demand for integrated solutions relating to
water resources (see, e.g. Kalbus et al. 2012; Savenije and Van der Zaag 2008) and a growing
demand for scientifically sound approaches to managing and usingwater resources at the regional
scale. It is only at the regional scale that environmental, economic and social problems linked to
water resources can be analysed and solved in an integrated way (see Barthel 2014a; Barthel
2014b for a detailed discussion and further references). As the links between groundwater and
surface water are of the utmost importance with respect to the integrated management of water
resources (e.g. Winter et al. 1998; Wood et al. 2011), the question of how GW-SWat the regional
scale can be studied/analysed/understood must be recognised as essential. Despite this, it seems
that there is very little guidance available in scientific publications about how to approach GW-
SW at the regional scale. Over recent years, the first author has put considerable effort into
developing integrated models of the hydrological cycle at the regional scale (Barthel et al. 2008a;
Barthel et al. 2012; Gaiser et al. 2008; Ludwig et al. 2003). These efforts ran into a multitude of
problemswhich had not been described or solved previously (see, e.g. Götzinger et al. 2008;Wolf
et al. 2008). Attempts to apply concepts that are well-established at smaller scales were not
successful. The biggest problem seems to be to find a concept which balances the desired model
results and the availability and distribution of data. The lack of scientific guidance leads to a
discrepancy between the necessity to understand GW-SW at the regional scale and the current
level and organisation of knowledge to support this understanding. A literature review that
explicitly looks at the regional scale is missing.

GW-SWat the regional scale is a subject that obviously touches upon a plethora of different
aspects that span a wide range of fundamental problems in hydrology. This adds to the
challenge because literature that can be clearly and directly associated with the subject GW-
SW at the regional scale hardly exists (see section 1.1). GW-SW at the regional scale is
therefore difficult to grasp as a subject and it is not possible to cover all the different aspects
involved at the same level of detail in a single journal article. In contrast to a classic review
paper, which should provide a permanent benchmark for the subject area, this paper is
designed as an overview with the goal of obtaining a better understanding of the subject and
determining future research needs. The paper focuses mainly on the following:

& A discussion of the special characteristics of regional scale GW-SW in comparison to
smaller scales, including an attempt to define relevant processes for that scale;
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& an overview of the literature that can be related to regional scale GW-SW; and
& an overview of tools and models available and applied to regional scale problems with a

focus on GW-SW.

This paper does not review the physics-based concepts and the corresponding mathematical
formulations of the GW-SW problem and the analytical or numerical solutions that may be
applied, as those are sufficiently covered in the literature mentioned in section 1.1. The
discussion is furthermore restricted to the water quantity related aspects of regional scale
GW-SW (i.e. fluxes and volumes) and not chemistry or biology.

2 Conceptual Differences of GW-SW at Different Scales

The following section compares the essential features of GW-SWat different scales. As the use
of terms describing the spatial (and temporal) scales varies greatly between different disci-
plines, the use within this paper is defined here:

The point scale is what we define as the smallest spatial entity that can be used to study
GW-SW in the field. The local scale is the scale where the interaction between one stream/
river reach and the adjacent (alluvial) aquifer can be studied. The sub-catchment or small
catchment scale refers to study areas which encompass the entire watershed of a small
catchment. The term regional scale finally is used for catchments of 103 to 105 km2 as stated
at the beginning of this paper.

2.1 Characteristics of the Point Scale

The essential characteristic of the point scale (or plot-scale; see Figure 1a), is that the
fundamental physico-bio-chemical processes in the pore space, at the boundary between
surface water and aquifer can be observed in detail. Therefore, quantitative process descrip-
tions based on the elementary laws of fluid mechanics are feasible at this scale. The main
drivers of GW-SW are pressure gradients within and between the groundwater and surface
water bodies in question. Significant properties determining the interaction are pore size and
distribution, pore geometry, and connectivity of the aquifer substratum and riverbed (see, e.g.
Woessner 2000). While very detailed observations are possible, it has to be noted that such
observations are usually restricted to the areas shown in pale boxes in Figure 1a. Within this
restricted domain of interest, elementary processes can be adequately observed and described,
but it is not possible to take into account the entirety of processes that take place in the aquifer
as a whole or within the entire surface water body involved. Processes that take place outside
these white areas have to be regarded as external processes and to be described as boundary
conditions of the observed system.

The situation at the point scale can be used to demonstrate one of the most central concepts
of GW-SW, i.e. quantification of the exchange fluxes between surface water and groundwater
using the difference in head and a coefficient that describes the conductance of the bottom
layer of the river. The relatively simple and straightforward concept behind this has been
extensively described and discussed in the literature (see, e.g. Sophocleous 2002). In brief, the
concept builds on Darcy’s Law. The flow q across the interface between groundwater and
surface water is expressed as the product of a constant representing the streambed leakage
coefficient and the difference in head. This concept is widely used to describe GW-SW in
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many modelling approaches (see section 3.2). While being apparently straightforward, the
concept has been criticised, as the streambed leakage coefficient, which is typically not
measurable in the field, can change drastically over time and a clear interface does not
necessarily always exist (e.g. Kollet and Maxwell 2006). Therefore it is usually determined
by inverse modelling together with other parameters, e.g. the hydraulic conductivity of

Fig. 1 Schematic representation of a the point scale (or plot-scale). Only influent conditions are shown, b the
local scale (or reach scale), c the sub-catchment scale (or small catchment scale). The system may include
different surface water reaches, different hydrostratigraphic units and different types of aquifers
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adjacent aquifers or, in some cases, groundwater recharge (Carrera et al. 2005; Hill and
Tiedeman 2007). A calibrated modelling parameter which can hardly be verified or even
constrained by field observations represents a considerable weakness of mechanistic modelling
concepts. It is, therefore, seen as an advantage of the so-called fully-coupled or physics based
modelling concepts (see section 3.1) that they do not rely on such an exchange coefficient (e.g.
Brunner and Simmons 2012). When it comes to larger scales, the concept loses some of its
relevance, as the focus of interest steadily moves away from the riverbed and processes in the
adjacent areas gain more and more importance (see the following sections).

2.2 Characteristics of the Local Scale

At the local scale (or reach scale, Figure 1b), a larger cross-section of the river with its
floodplain and adjacent geological units can be included. The main difference, compared to the
point scale, is that the fundamental processes can no longer be described in a discrete way as it
is no longer possible to collect the required number of observations. It should, however, not be
forgotten that this is a merely practical limitation and that this does not mean that the
fundamental processes as such change or lose their relevance (see section 2.5). However, in
practice it means that effective parameters are required and, thus, mathematical descriptions
require some form of aggregation or generalisation. In particular the concept of GW-SW
controlled by head in surface water and groundwater and a stream bed leakage coefficient (see
section 2.1) become more challenging to apply as all the parameters involved are known to
show large spatial (and temporal) heterogeneity (see, e.g. Fleckenstein et al. 2006; Irvine et al.
2012).

On the other hand, it is still not possible to calculate closed balances for the groundwater
and surface water bodies involved. Usually, neither entire gauged surface water catchments nor
the whole extent of the groundwater aquifer in question can be studied at this scale. Thus,
processes that occur outside the immediate area of interest, but which still have to be
considered as drivers of the system (runoff formation, groundwater recharge, regional ground-
water flow, etc.) have to be represented as boundary conditions of some sort. The main
challenges at this scale, i.e. areas too large to allow discrete project descriptions and too small
to study the hydrological system (catchment) in its entirety, are well known and described in
the literature, as it is this local or reach scale that receives by far the most attention from
scientists.

Looking at the relevance of processes, properties and conditions, it can be inferred from a
comparison of Figure 1a) and Figure 1b) that processes within the entire cross section of the
alluvial aquifer, exchange fluxes between different aquifers, land surface processes and
unsaturated zone (UZ) processes have to be added to the immediate exchange between aquifer
and river at the interface. On the other hand, it can be argued that these processes have the
same influence at the point scale as at the reach scale – they just lie outside the area of interest
and might be included as boundary conditions. See section 2.5 for an extended discussion.

2.3 Characteristics of the Sub-catchment Scale

The sub-catchment scale (Figure 1c), covers the entire drainage area of a given point in a
stream (gauge). It is usually assumed that this allows the calculation of a closed balance for the
catchment, with the discharge at the catchment outlet (gauge) as an integral measure of control.
It should be noted that, from a groundwater perspective, fluxes across the catchment
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boundaries are always possible, apart from at the continental scale. However, most hydrolog-
ical applications are, to a large degree, based on the assumption that a catchment is a closed
system.

In contrast to the local scale Figure 1b, GW-SW must focus on several different streams
(tributaries) that might be connected to different aquifer formations. A catchment of this size
will often allow a more comprehensive consideration of the subsurface system, i.e. to take into
account the existence of different geological formations, vertical differentiation (stratigraphy,
tectonic structures), and their interplay with the relief. In populated areas, the characteristics
and consequences of anthropogenic interference (hydraulic structures, groundwater and sur-
face water withdrawal) are significant. Mathematical descriptions of processes in catchments
need to become increasingly aggregated, i.e. even larger areas need to be regarded as
homogeneous entities.

The increasing number of possible constellations (different tributaries, different aquifers,
different GW-SWmechanisms) leads to increasing complexity of the system. Driving forces of
GW-SW can be far away from the actual stream–aquifer interface. Again, it could be argued
that this changes the relevance and importance of different processes. See section 2.5 for an
extended discussion.

2.4 Characteristics of the Regional Scale

Figure 2 shows, as an example to demonstrate the differences to the scales shown previously in
Figure 1, the relief, river network and geology of the Neckar Catchment, Germany.

The characteristics of the regional scaled catchments are determined by a range of possible
combinations of climate, geomorphology, geology, landscape types, and biological factors that
can occur in parallel within the same study area (Dahl et al. 2007; Harvey and Bencala 1993;
Larkin and Sharp 1992; Sophocleous 2002; Winter 1999). Any enlargement of the study area
size will increase the variety of combinations of these factors and thus lead to an increase in
complexity. Even in areas with otherwise exceptionally good data – such as in central Europe –

Fig. 2 Heterogeneities of relevant surface- and subsurface features at the regional scale (or catchment scale),
using the Neckar catchment (14,000 km2) as an example (data provided by the state geological survey and
environmental agency of the federal state of Baden Württemberg, Germany). Note the almost negligible extend
of alluvial formations
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observations are usually focused in areas of particular interest, such as densely populated or
intensely cultivated areas. Consequently, data are patchy in space, time, and with regard to the
number and choice of observed parameters (Candela et al. 2014). An additional issue is the
heterogeneity of the data, which in many cases has been collected by different agencies, with
different objectives, and over different periods and is consequently very inconsistent. Many
authors define the relative scarcity of data as the main challenge for regional scale work
(Candela et al. 2014; Refsgaard et al. 2010; Zhou and Li 2011). Looking at long time scales, it
is often very difficult to judge whether data have been influenced by human activity (e.g.
hydraulic structures, land use changes) or not.

One might argue that heterogeneity occurs at all scales and is thus not characteristic only of
the regional scale. Whether or not this is true or relevant is probably primarily a matter of
perspective and context. In the context of the present paper, we assume that a system,
composed of many differing subsystems, is more complex and heterogeneous than each of
its individual subsystems alone. The same is assumed for the patchiness of data (observations
clustered in areas of special interest).

In summary, the regional scale (or catchment scale) differs mainly in size of the study area
from the sub-catchment scale. Typical (yet not always realised) characteristics in contrast to
the sub-catchment scale are:

& Regional catchments can be subdivided into a number of gauged sub-catchments or –
basins;

& The heterogeneity of landscapes, relief, climatic conditions, and geological units within the
study area increases significantly; and

& Socio-economic and technical aspects become increasingly important. Most regional
catchments will include managed hydraulic structures, and modified discharge networks.
Water transfers from one catchment to another (through water supply, waste water,
irrigation networks, crops, etc.) can play an important role. Source-sink / supplier-
consumer relations etc. can be captured in their entirety.

To exemplify this kind of situation using a real world example, Figure 2 shows maps of the
Neckar catchment in Germany, where GW-SWwas intensively studied in integrated modelling
projects (Barthel et al. 2008a; Götzinger and Bardossy 2007; Götzinger et al. 2008, see also
section 3.3). It is obvious that in such a large heterogeneous catchment, various processes with
strong interdependencies function at different spatial and temporal scales. As a result, GW-SW
also becomes a spatially and temporally heterogeneous set of processes involving many
aquifers and many networked surface water bodies. The likelihood that the type of GW-SW
(influent or effluent; with or without full hydraulic contact) changes frequently both in space
and time increases drastically from a local to a regional system. As already discussed for the
sub-catchment scale, GW-SW at this scale is no longer a ‘one river-reach ↔ one aquifer’
phenomenon, but encompasses the entire catchment and a large number of different processes.
In Figure 2, please note that the area covered by alluvial sediments, i.e. those geological
formations typically considered when GW-SW is studied at local scales, is almost
negligible in comparison to the geological formations that form regional aquifers. This
means that regions far away from the actual interface between GW and SW must have
a major impact on the actual exchange processes. Please also note that the geology affects the
density of rivers and streams (less dense in karstic limestone areas) i.e. the way surface and
subsurface processes interact.

8 Barthel R., Banzhaf S.



2.5 GW-SW Related Processes at Different Scales

Scale dependencies of hydrological processes and the possibility of transferring properties,
process descriptions and model parameters from one scale to another (up- and downscaling,
regionalisation) have been intensively studied in recent decades. Upscaling, i.e. methods to
make measurements, process descriptions, or model parameters identified at the local scale
available for use at larger scales, has received wide attention in the hydrological literature
(Becker and Braun 1999; Farmer 2002; Neuman and Di Federico 2003; Renard and deMarsily
1997; Sánchez-Vila et al. 1995). The same is true for regionalisation, i.e. the generalisation of
data or model parameters obtained from distinct points or small spatial entities to larger areas
(Diekkrüger et al. 1999; Kleeberg et al. 1999; Parajka et al. 2005; Samaniego et al. 2010). Few
authors, however, deal explicitly with the scale dependency of GW-SW (CSIRO 2008; Dahl
et al. 2007; Kollet and Maxwell 2008; Levy and Xu 2012). Most works dealing with scale
dependency are limited to spatial extents that are significantly smaller than regions within the
meaning of this paper. In consequence, there are few insights to be gained from this work and
it remains largely undecided how to transfer local scale process knowledge to the regional
scale.

It has frequently been argued in the literature that processes that are relevant at small scales
might become irrelevant at larger scales (see, e.g. Bronstert et al. 2005). Kirchner (2006) and
McDonnell et al. (2007) suggest that the governing equations that apply in small scale physics
might not adequately describe large scale hydrological responses in heterogeneous systems.
Several authors have tried to further conceptualise and formalise the different significance and
relevance at different scales as well as in different environments, landscapes and climates and
to compile this into a theory of dominant processes (Grayson and Bloeschl 2000; Sivakumar
2004; Sivakumar 2008; Sivapalan et al. 2003). The question of whether or not processes loose
or gain relevancy at the large scale was already been raised in the preceding sections. Based on
a simple descriptive comparison of the systems at different scales, the following three general
statements can be made.

1. Processes that take place at the interface between groundwater and surface water (fluxes
across the riverbed) determine, to a large degree, the nature and magnitude of GW-SW.
These processes can be observed in detail at small scales. When moving to a larger scale,
these processes take place unchanged but there are strong practical limits to observing
them.

2. Processes that can be regarded as driving forces of GW-SW (i.e. causing head changes in
aquifers and river reaches) are not restricted to the immediate interface between ground-
water and surface water. On the contrary, they can be steered by processes and properties
of materials far away. These processes can usually only be observed in their entirety when
looking at larger scales, yet they do not lose any of their relevance at small scales.

3. For practical reasons, studying GW-SW at small scales means detailed observations in a
small area and a simplification of the processes that occur outside this area. Studying GW-
SW at large scales, means using observations with larger distances between them and a
simplification of the processes at the immediate interface of groundwater and surface
water.

Together, these three statements indicate that the question of process-relevance might not be
something that can be generalised, but rather is a question of perspective and feasibility.

Groundwater and surface water interaction at the regional-scale 9



3 Modelling GW-SW at the Regional Scale

Despite the fact that regional-scale GW-SW is not often addressed explicitly as a
research topic on its own, it implicitly receives a lot of attention through integrated
models (e.g. Gaukroger and Werner 2011; Jolly and Rassam 2009; Rossman and
Zlotnik 2013; Sebben et al. 2013). "Integrated modelling^ often has a much wider
focus than GW-SW. It may include coupling to atmospheric models, plant growth
models, socio-economic models, etc. and the actual representation of water resources
can be addressed in very different ways. This makes it somewhat difficult to extract
the specific GW-SW related aspects.

In general, the integration of GW-SW into wider models can be categorised according to the
following characteristics:

1. The number of processes and elements of the hydrological cycle that are included in the
integrated system;

2. The type of conceptual/mathematical representation of such processes and elements (e.g.
flow in rivers represented as physically-based 2D open channel flow versus simple
conceptual routing);

3. The degree of linkage between the different processes and elements of the hydrological
cycle (fully coupled equations, interfaces between separate modules, etc.);

4. The nature and type of the model components and process descriptions involved (numer-
ical, conceptual, lumped, distributed, etc.), including questions about which processes are
explicitly modelled and which are represented as boundary conditions;

5. Temporal aspects of model discretisation and model coupling: parallel, sequentially,
uniform or different time steps and, more generally, whether the calculations are steady
state or transient; and

6. The objectives, problem setting and focus of interest, including issues such as data
availability (e.g. Bungauged basins^).

The possible number of combinations of all these characteristics is huge, making it nearly
impossible to address the subject in a systematic way. Overviews describing different coupling
strategies are provided by Barthel et al. (2008a), Ebel et al. (2009), Furman (2008), Kollet and
Maxwell (2006), Markstrom et al. (2008), Levy and Xu (2012), Rossman and Zlotnik (2013),
Sebben et al. (2013), and Spanoudaki et al. (2009).

From the large number of potential classification schemes indicated by the list above, we
chose to categorise integrated models according to the coupling scheme only. We thus
distinguish between:

& Fully coupled schemes: equations governing surface and subsurface flows are solved
simultaneously within one software package;

& Loosely coupled schemes: two or more individual models are coupled via the exchange of
model results, where the output of one model forms the input of the other.

The loosely coupled schemes are further subdivided into:

– Bready to use^ software packages which contain two or more individual model compo-
nents embedded in a common framework;

10 Barthel R., Banzhaf S.



– Loose coupling on an individual, less standardised basis (often developed and used in
only a single context).

The boundaries between these classes, in particular of the two subdivisions defined for
loosely coupled schemes, are rather transient and mixed types can be identified.

The following sections summarise very briefly the main features of the aforementioned
categories, and list the main software packages and applications in each class. Thus, the
selection of software packages and applications focuses on those that can have a more or less
clear relationship to the regional scale, as it is defined in this article (i.e. designed to be used at
regional scales or actually applied to larger scales). For each software package, we tried to
identify model applications in model domains between 103 and 105 km2 in size. If none or few
such were present, we also included model domains between 102 and 103 km or much larger
domains. Research was identified from the Scopus2 database, using the following search
phrase: ( TITLE-ABS-KEY ( [model name] ) AND TITLE-ABS-KEY ( regional ) OR
TITLE-ABS-KEY ( catchment ) OR TITLE-ABS-KEY ( meso*scale ) ) . In addition, we
followed references and hints to software packages and applications within the literature
identified.

3.1 Fully Coupled Schemes

Fully coupled modelling schemes, sometimes also referred to as Bphysics-based models^ (see,
e.g. Loague et al. 2006), have received wide attention and significant progress has been made
with their development in recent years (Gaukroger and Werner 2011; Maxwell et al. 2014).
The software packages mentioned most often in the literature include ParFlow (Kollet and
Maxwell 2006), HydroGeoSphere (Therrien et al. 2009), InHM (VanderKwaak 1999), and
OpenGeoSys (Kolditz et al. 2012). More examples are described in Sebben et al. (2013), Shi
et al. (2013), Partington et al. (2013), Maxwell et al. (2014) and Bronstert et al. (2005). These
fully coupled schemes have in common the attempt to achieve a physics-based description of
all processes involved in the saturated zone, unsaturated zone and surface waters and thus
generally avoid implementing interfaces between separate model modules (e.g. Brunner and
Simmons 2012). In this way, they eliminate the boundaries between the traditional
Bcompartments^ (to varying degrees) and avoid a large number of problems that are related
to using different concepts and software packages for different compartments. For example,
HydroGeoSphere allows for stream/surface drainage network genesis, i.e. a river will form
naturally within the model and interact with the groundwater in a physically based way. There
is no need to predefine the river’s boundaries or its hydraulic head, which can be regarded as
an outstanding advantage as it avoids the problems related to the riverbed-conductance concept
(see section 2.1). In general, the focus shifts away from the traditional Bflux through the river
bottom interface^ type of conceptualisation and becomes part of a holistic description of the
water cycle.

Several model inter-comparisons for fully coupled software packages are ongoing (see, e.g.
Delfs et al. 2012; IHMI Workshop 2011; Maxwell et al. 2014). The problems used for
comparison encompass rather small areas and are built on synthetic test cases (Pryet et al.
2014). Maxwell et al. (2014) report comparisons of larger and more complex cases. The

2 https://www.scopus.com/; compared to the Web of Science, Scopus includes a wider selection of conference
proceedings
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performance of different fully coupled software packages was also investigated by Sebben
et al. (2013). They found that a lack of test cases and limited options for evaluating model
performance (mainly river discharge only) hinder a meaningful comparison. It is common to
use only river discharge (and not groundwater heads) to evaluate model performance of
integrated models (Hattermann et al. 2004; Sebben et al. 2013). Table 1 shows an overview
of fully coupled models and their application to catchments within the range defined as
regional in this article.

An additional software package which is quite frequently mentioned in the literature is
InHM (Blum et al. 2002; Jones et al. 2006 ; VanderKwaak 1999 ). However, to the knowledge
of the authors, this has only been applied to very small catchments between 0.001 and 0.1 km2

so far (Blum et al. 2002; Jones et al. 2006; Mirus and Loague 2013; VanderKwaak and Loague
2001). Guay et al. (2013) and Semenova and Beven (2015) list even more examples of models
from the fully coupled modelling domain.

3.2 Loosely Coupled Schemes

While fully coupled, physics-based modelling concepts and software packages are relatively
easy to identify and describe, as they are Bmonolithic^ by definition, it is more difficult to
evaluate loosely coupled schemes, which consist of two or more independent model software
packages. Apart from the fact that a large variety of model types (hydrologic, hydraulic,
numerical, conceptual, 2D/3D, lumped, distributed, etc.) can be involved, these model codes
can be coupled in very different ways with respect to the exchange parameters and various
spatial and temporal aspects of coupling. Many such loosely integrated schemes are unique,
i.e. only developed and used by specific groups and/or in specific spatial or problem contexts.
Other coupling schemes are more standardised and are used by larger communities in varying

Table 1 Overview of fully coupled schemes and their largest-scale applications

Model name Descriptions and reviews Published regional scale applications / largest scaled
applications / selected smaller scale applications

HydroGeoSphere Brunner and Simmons (2012)
Colautti (2010)
Ebel et al. (2009)
Park et al. (2009)
Therrien and Sudicky (1996)
Therrien et al. (2009)
Harter and Morel-Seytoux

(2013)

• Continental scale model for the whole of Canada
mentioned in Sudicky (2013)

• Rokua esker aquifer (ca 250 km2) (Ala-aho et al. 2015)
• Haean-myun Catchment South Korea (62.7 km2)

(Bartsch et al. 2014)
• Geer Basin, Belgium, 480 km2 (Goderniaux et al. 2011)
• San Joaquin Valley 17,232 km2 (Bolger et al. 2011)
• Toluca Valley basin 2,100 km2 (Calderhead et al. 2011)

OpenGeoSys Delfs et al. (2012)
Kolditz et al. (2012)

• Western Dead Sea escarpment, Israel, Palestine,
3,800 km2 (Gräbe et al. 2013)

• Meijiang catchment, China, 6,983 km2 (Sun et al. 2011)

ParFlow,
ParFlow.CLM*

Ashby and Falgout (1996)
Jones and Woodward (2001)
Kollet and Maxwell (2006)
Maxwell et al. (2010)
Maxwell et al. (2013)

• Continental scale model for the whole of the United
States (Maxwell et al. 2013 )

• Ringkobing Fjord / Skjern River basin catchment,
western • Denmark 208 km2 (Ajami et al. 2014a;
Ajami et al. 2014b)

• Little Washita basin Oklahoma, USA, 1,600 km2

(Condon and Maxwell 2014)

*Common Land Model (Dai et al. 2003)

12 Barthel R., Banzhaf S.



contexts. It should be mentioned that in loosely coupled schemes, coupling can be Bstrong^,
i.e. the exchange is spatially and temporally explicit for the model time, which allows the
representation of feedbacks (Bronstert et al. 2005; Furman 2008). Alternatively, coupling can
be Bweak^, i.e. models are run completely consecutively. Hybrid forms also occur.

3.2.1 Ready-made Model Packages for GW-SW

Overviews of ready-made model packages for GW-SW (primarily addressing loosely coupled
schemes) have been compiled by CDM (2001), Blum et al. (2002), Levy and Xu (2012),
Bobba (2012), Alaghmand et al. (2013), and Sebben et al. (2013). These overviews, however,
do not directly address applicability or applications at the regional scale.

Most loosely coupled schemes are, in one way or another, based on MODFLOW
(Harbaugh 2005; McDonald and Harbaugh 1988), which represents the groundwater com-
partment and its various options represent surface water related boundary conditions. In
principle, MODFLOW calculates the fluxes across the boundary between aquifer and surface
water based on the difference in hydraulic head, an exchange coefficient representing the
hydraulic conductivity of the river bottom and geometric parameters of the interface. This can
be done using different modules, e.g. the river package, drain package, stream flow routing
package or the general head package (Prudic et al. 2004). Additions and enhancements to this
basic scheme are frequently published (Barlow and Harbaugh 2006). Besides the
MODFLOW-based, ready-made software packages, other mainly commercial software pack-
ages, are available that follow a similar approach to solve equations for groundwater flow,
surface water run-off and unsaturated flow independently and couple the processes via the
exchange of results through boundaries. In most ready-made packages, coupling is strong.

In addition to the software packages listed in Table 2 more packages are mentioned in the
literature. Again, many are based on MODFLOWor can, in some way, be linked or coupled to
it, e.g. HEC-RAS (Rodriguez et al. 2008), DAFLOW (Jobson 1989), HEC-HMS
(Scharffenberg and Fleming 2010), or MD-SWAT-MODFLOW (Ke 2013). Non-
MODFLOW based packages include HMS (CDM 2001; Yu et al. 1999), DYNSYSTEM
(CDM 2015), and IGSM (LaBolle et al. 2003; Watson 1993). Regional applications of these
have not, to the knowledge of the authors, been published.

3.2.2 Other Applications of Loosely Coupled Schemes with Applications at the Regional
Scale

The loosely coupled model software packages described in the previous section include, in
general, fully developed coupling schemes, i.e. they can immediately be applied for simulating
GW-SW without the need for a new user to develop their own interfaces, etc. In addition to
such ready-to-use software packages, there are several examples in which previously inde-
pendent groundwater and surface water models have been coupled within a specific problem
context. Concepts for context specific integration of two or more standalone models (GW, SW,
UZ) are hard to review in a systematic way as there are so many unique combinations. It is also
difficult to decide where to put the boundary between the coupling of models of groundwater
and surface water and the addition of a module that represents the other compartments relative
to a groundwater or surface water model, not necessarily taking into account the actual
processes. Many such models seem to exist (e.g. Feyen 2005) but not all of them have
necessarily been published in peer-reviewed literature. They are often developed by national

Groundwater and surface water interaction at the regional-scale 13
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agencies and use existing standalone models for GW and SW as a basis. Table 3 lists those
model applications that could be identified from journal literature and clearly fall into the range
we defined as regional (> 1,000 km2).

In addition to the examples listed in Table 3, more packages are mentioned in the literature
but it remains unclear how relevant they are or could be. Gilfedder et al. (2012), e.g. describe
GWlag. This is a conceptual model for improving water resource decision-making by
connecting surface water and groundwater characteristics and their interactions with land-use
changes, which was applied in the Tarcutta Creek catchment, a part of the Murrumbidgee
River catchment in New South Wales, Australia (1,630 km2). SWIM is a modified version of
SWAT (Hattermann et al. 2004), with a groundwater module that only models groundwater
levels at a spatial resolution of sub-catchments. A modified version has been applied to the
Elbe-catchment in Germany (see Table 3).

3.3 Summary of Modelling Tools and Regional Applications

In total, we identified 17 (253) ready-to-use software packages (see Tables 1-3) to integrate
GW and SW that were applied at the regional scale or could potentially be applied at the
regional scale. Four (5) of these are fully coupled systems. The fully coupled software
packages are quite similar with respect to functionality and features, while the loosely coupled
systems differ with respect to a huge range of different aspects.

We identified 25 applications of regional models in areas between 1,000 and 100,000 km2.
Five of these employed a fully coupled system, 13 utilised ready-to-use packages, 7 employed
more individual solutions. In addition there are 16 regions between 100 and 1,000 km2 that
could be considered Bsmall regional scale^, whereof 12 made use of loosely coupled schemes.

In summary, around 30 software packages or more individually coupled modelling schemes
were developed that claim to be applicable at the catchment or regional scale. These were
applied to around 40 model applications covering regions between 100 and 100,000 km2. It is
easy to conclude that this means that most models where not used in more than one regional
scale catchment. It is also clear that none of the catchments was modelled with more than one
modelling scheme.

It is probably very easy to overlook ongoing and completed integrated modelling activities,
in particular in the field of loosely coupled, context specific modelling schemes, when
focusing on journal literature only. It may be that such regional integrated models are presented
more often in conference contributions and reports than in the easily accessible journal
literature. This is confirmed to some extent by Wood (2012): "…. I suspect that the sheer
size and data complexity of these integrated models with their voluminous outputs might
(make) them difficult to publish in traditional Bwhite^ or Bgrey^ hydrogeological literature.^ A
more detailed analysis of this issue was provided by Burell (2008), who claims that integrated
models cannot be adequately published in journal literature at all.

Nevertheless, the number of regional applications of coupled groundwater and surface
water models is far lower than expected considering the importance of the topic and in view of
the large number of publications dealing with integrated models of groundwater and surface
water. In particular in the groundwater field, a lack of peer-reviewed scientific publications
pertaining to regional scale studies and models can be observed (Barthel, 2014a). Moreover,
the often cited trend towards more integration has not yet led to the wide use of integrated

3 Numbers in brackets: mentioned in the literature but no clear description within the context of this paper
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models. For example, Rossman and Zlotnik (2013), reviewed 88 regional groundwater-flow
modelling applications from the US and found that only 7% of them included any attempt at all
to couple groundwater and surface water. Despite the low numbers, it is promising that most
regional scale integrated models were published within the last 5 years. This might indicate a
trend and mean that even more work is in progress.

3.3.1 Application Potential and Limitations of Fully Coupled Software Packages

The functionality of most of the fully coupled systems is overwhelming and it seems that they
provide answers to almost any question we might have about water resources (see, e.g.
Brunner and Simmons 2012). The usefulness of the fully coupled systems at the regional
scale is quite often explicitly pointed out. On the other hand, few regional applications have
been published and comparisons to other modelling approaches applied to the same area are
missing. The viability of the models has primarily been proven in various test applications
(Kollet et al. 2010; Sebben et al. 2013) and proof of applicability in practical management still
has to be provided (Miller et al. 2013). So far, the application of fully coupled software
packages seems to be largely restricted to academic studies, mainly at smaller scales and at
specific test sites. Harter and Morel-Seytoux (2013) presented an evaluation of HGS’ appli-
cability to (regional) management problems and concluded that its present use is mainly
academic and they expressed doubts about the validity of the mathematical representation at
large scales. According to Harter and Morel-Seytoux (2013), both issues are common to many
aspects of modern soil physics and fully coupled models (see also Semenova and Beven
2015). This might be a result of the huge computational cost, which has only recently been met
by the availability of powerful parallel computing systems to a wider public. And yet it should
be noted that these model concepts are relatively new, indicated by a sharp increase in related
publications since around 2005. Almost all model applications in regions larger than 100 km2

were published after 2010, the majority in 2014.

3.3.2 Application Potential and Limitations of Loosely Coupled Schemes

Numerous loosely coupled schemes have been developed for the regional scale, but the
number of actual published regional applications of these is low. Looking at the examples
published in the scientific literature it seems that each individual scheme is applied only a few
times or even just once (by one group of researchers, in one catchment). Extracting general
findings or drawing conclusions from comparisons is therefore hardly possible.

It is apparent that the majority of regional scale models addressing GW-SW make use of
either traditional hydrological (rainfall runoff in the widest sense) or groundwater flow models
and represent the other part by relatively simple, conceptual descriptions (see also Fleckenstein
et al. 2006; Hattermann et al. 2004). It is quite common that regional integrated models are
based on surface water models rather than on groundwater models (Werner et al. 2006).
Groundwater-centred integrated models most often employ MODFLOW, using a more or less
complex solution for surface water discharge and soil moisture to provide input for the chosen
boundary condition packages. From the loosely coupled systems with a full representation of
both surface and groundwater, it appears that MIKE SHE and more recently FEFLOW coupled
with MIKE11 are most often used for regional studies. The respective applications are more
often driven by practical management questions than by mere scientific interest – a noteworthy
aspect when it comes to laying out future pathways for integrated hydrological research.
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The problems associated with such loosely coupled schemes stem from the fact that hydro-
logical models typically do not calculate river stages at any specific point along a stretch of river.
To obtain the information needed for calculating exchange fluxes based on pressure differences,
interpolation of river water levels between gauges or other simple and pragmatic solutions are
required. Another issue is that river bottom elevations above a common datum (sea level) are
quite often not available for all potentially relevant river reaches. Hence, channel bottom
elevations have to be fitted or derived from proxy data (Scibek et al. 2007; Wolf et al. 2008).
This leads to a general problem within loosely coupled systems: GW-SW in such systems has to
be based on the calculation of the exchange fluxes as a result of potential differences, the
geometry of the river bed, and its hydraulic properties. In one way or another, most of the loosely
coupled schemes apply the critical riverbed-conductance concept (see section 2.1).

It is uncommon to report on failure and deficits when writing about models, either in peer
reviewed scientific literature or in grey literature. This makes it hard to evaluate the true
potential of an approach. Our own experiences from the GLOWA-Danube project for the
Upper Danube catchment (77,000 km², Barthel et al. 2012; Ludwig et al. 2003) and in the
RiverTwin project for the Neckar catchment (14,000 km², Barthel et al. 2008a; Gaiser et al.
2008) in Germany gave deeper insights of the tremendous challenges associated with inte-
grated modelling at the regional scale. Some of these difficulties have been discussed in detail
in previous publications (Barthel 2006; Barthel et al. 2008a; Götzinger et al. 2008; Rojanschi
et al. 2006; Wolf et al. 2008). For example, huge problems arise when groundwater recharge,
calculated by conceptual hydrological models is applied to physics-based numerical ground-
water flow models because the spatial distribution of this recharge does not take into account
the geology of regional aquifers (discussion in Barthel 2006; Jie et al. 2011; Wolf et al. 2008).
But most importantly, it became evident that data availability is far from sufficient, e.g. with
respect to parameterising the exchange terms in MODFLOW. This is worrying as the Neckar
and the Upper Danube catchment may be among the most intensively monitored regional-
scale-catchments in the world.

3.4 Regional Integrated Modelling in View of General Challenges of Hydrological
Modelling

It was stated at the beginning of this paper that the subject BGW-SW^ is one that is strongly
connected to many of the big challenges of hydrological sciences:

& How should one deal with uncertainty associated with data, models and predictions in the
context of integration and stakeholder demands (e.g. Castelletti et al. 2008; Li et al. 2011)?

& Should models be as simple or as complex as possible (see, e.g. Beven and Cloke 2012;
Wood et al. 2011; Wood et al. 2012)?

& How should we deal with heterogeneity, how do we scale up processes, properties and
model parameters (see, e.g. Bárdossy and Singh 2011; de Marsily et al. 2005; Fleckenstein
et al. 2006; Götzinger and Bardossy 2007; McDonnell et al. 2007; Nœtinger et al. 2005;
Samaniego et al. 2010; Vermeulen et al. 2006)?

These questions are relevant for all sorts of hydrological problems and at all scales, but they
are much more pronounced for regional scale GW-SW (Barthel 2014a). Discussing these
issues on the general and abstract level of an overview as presented in this article is
unfortunately impossible.
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4 Discussion

The objective of this paper was to review the scientific literature that provides guidance on
how to analyse, describe, understand, and finally model GW-SW meaningfully at the regional
scale. The results of this evaluation are not very encouraging: knowledge of the topic is
scattered and often difficult to identify. It is clear that a large body of literature related to GW-
SW in general exists. A large amount of information is available about GW-SWat small scales
and the number of studies in this field, both experimental and modelling, is rapidly increasing.
Unfortunately, little guidance is available on how to apply the knowledge gained from these
activities at the regional scale as defined in this article. The specific issue of BGW-SW at the
regional scale^ is hardly addressed explicitly at all.

It seems that part of the problem is defining what exactly ‘GW-SWat the regional scale’ is.
While at the point or local scale it is easy to describe GW-SW as a process with a defined
location, direction, and driving forces, it remains unclear if the same is possible at the regional
scale (compare Figure 1 and Figure 2). GW-SW at the regional scale is often no longer a
Bprocess^ of exchange between one groundwater and one surface water body as it usually is at
local scales. GW-SW at the regional scale can be regarded as the result of the combination of
all processes in a regional catchment or any other appropriately sized area of interest. How
relevant these processes are depends on the regional setting and thus on a combination of
rather different factors. But, more importantly, the relevance of different processes needs to be
defined in relation to the problem setting, data availability and other practical constraints and
demands. It is thus probably necessary to frame the definition of GW-SW at the regional scale
more widely than at the local scale. GW-SW at the regional scale encompasses the entire
terrestrial hydrological cycle, all the processes leading to changes of pressure, saturation
(concentrations) within and even outside the area of interest.

The best source of information about GW-SWat the regional scale is literature on integrated
modelling (see section 3). A large variety of modelling concepts capable of representing GW-
SW has been published. Many of those concepts have the potential for application at the
regional scale, yet real regional scale applications are still rare. This makes it difficult to assess
the validity and appropriateness of the published approaches. The available knowledge
remains scattered and difficult to use. It may be seen as a problem that regional, integrated
modelling efforts are normally created by government agencies, which often have lower
scientific ambitions than scientists from academia. Therefore much of the work carried out
in the field may remain unpublished (see Barthel 2014a). Additionally, publishing large
integrated modelling efforts is difficult within the constraints of a journal article (Burell
2008; Wood 2012).

If GW-SW at the regional scale is essentially regarded as the sum of all hydrological
processes in a region/catchment, then the most appropriate way to address this seems to be the
use of fully coupled, physics-based models. Those models actually attempt the required
holistic description of the hydrological cycle and have the power to connect various processes
over a range of spatial and temporal scales. However, while they seem to have the potential to
solve all the related problems, it still has to be demonstrated that they are valid and applicable
to practical regional management problems. Most authors agree that regional scale integrated
modelling is constrained by data availability and that fully coupled models are usually not
advantageous when combined with limited data (e.g. Brunner et al. 2010; Semenova and
Beven 2015). Therefore, despite the attractiveness of fully coupled schemes, coupling rela-
tively simple models using relatively simple coupling schemes may still provide a suitable
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approach even if this means severe oversimplification of complex regional systems. Currently
neither of the parties advocating more or less complexity seems to be able to prove that their
approach is better. Systematic comparisons using several alternative approaches are missing
for the regional scale and thus advantages and disadvantages of one approach over another
remain unknown.

It is not possible to determine the most suitable strategy for regional scale integrated
modelling if the discussion focuses only on the scientific viewpoint. Even if the scientific
community desires general, applicable, transferable approaches to deal with GW-SW at the
regional scale, it might not be feasible to define such an approach independent of a practical
management context. Thus, defining the management problem that needs to be solved and at
what level of accuracy (special and temporal) is a necessary step, along with determining the
degree of uncertainty that is acceptable. This means that approaches need to be context-
specific and it is always necessary to define them together with stakeholders and end-users. In
such a context, the quantitative performance criteria usually applied within the scientific
community (the Nash-Sutcliff coefficient etc.) or approaches to quantifying uncertainty remain
rather abstract, difficult to communicate concepts that do not explain the usefulness and
applicability of a model and its results for answering practical management questions.
Regional models might thus have to be developed from a different perspective: either merely
driven by unique, context- and scale-specific demands within the area of practical water
resources management or by developing integrated regional models for the sole purpose of
providing a regional framework for nested local solutions. Participatory and transdisciplinary
approaches may be more helpful in the attempt to provide meaningful regional solutions.
Instead of asking how we can fundamentally identify, understand, describe, and model all
relevant processes at the regional scale, we may have to ask what the nature of the result of our
models should be, in order to meet the requirements of practical management at the regional
scale. In the two regional integrated projects that formed the starting point and stimulus to
write this paper an intensive dialogue with stakeholders and potential end-users was carried
out. It has frequently been pointed out that a gap exists between science and practice
and that scientists are not creating the knowledge that practice (society) actually
needs, thus explaining the low confidence of practitioners in models developed by
scientists (e.g. Argent et al. 1999; Borowski and Hare 2007; Brugnach et al. 2007; de
Kok and Wind 2003; Lerner et al. 2011; Olsson and Andersson 2007).

5 Concluding Remarks

The review of the literature that deals with GW-SW at the regional scale showed that
there are very few studies that address this topic directly. Field experiments and
studies based on regional monitoring of both GW and SW are largely missing, as
are fundamental theoretical considerations on how to address the problem. Knowledge
of how to examine GW-SW at the regional scale is mainly derived from studies
carried out at local scales, without a clear theory of how Bupscaling^ should be
performed (Sebben et al. 2013). There is hardly any evidence that this approach is
appropriate. It is frequently mentioned that the relevance (dominance) of processes
might be different at different scales, but there is no clear quantitative proof of this
with respect to GW-SW. In general, existing knowledge pertaining to GW-SW at the
regional scale is still very scattered and distributed over a wide range of different
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research fields. A large number of modelling concepts that are intended to be used for
the integrated modelling of groundwater and surface water at the regional scale have
been published. Many of them, however, have not been applied at the regional scale
as defined in this article. To the knowledge of the authors, there is no single case
study were two or more fundamentally different modelling concepts have been tested
in the same catchment and many modelling concepts have not been applied in more
than one catchment. A systematic comparison is thus impossible. On the basis of
peer-reviewed journal literature, it is not possible to decide which approaches are
feasible, suitable and appropriate for integrated regional modelling under specific
conditions (e.g. a given complexity of geology and a given level of data availability).
The few regional scale integrated models described in the literature are all very
specific, adapted to the specific conditions of the region and the relevant publications
focus on these specific aspects rather than on generic findings.

Perhaps when looking for solutions at the regional scale, one should refer to conference
proceedings, agency reports and software manuals. This may be true, but cannot lead to a
satisfying result from a scientific perspective. It is an unfortunate situation for the research
community if, as suggested by (Wood 2012), scientific results in this important subject area are
mainly being published outside the peer-reviewed scientific literature.
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